...
首页> 外文期刊>The Journal of Geology: a semi-quarterly magazine of geology and related sciences >Discussion of Suitable Chemical Weathering Proxies in Sediments by Comparing the Dissolution Rates of Minerals in Different Rocks
【24h】

Discussion of Suitable Chemical Weathering Proxies in Sediments by Comparing the Dissolution Rates of Minerals in Different Rocks

机译:Discussion of Suitable Chemical Weathering Proxies in Sediments by Comparing the Dissolution Rates of Minerals in Different Rocks

获取原文
获取原文并翻译 | 示例
           

摘要

In studies of paleoclimate change, variations in major and minor elements are often used as proxies for chemical weathering in soil or lake sediments. To prove the suitability of chemical weathering proxies and further discuss the impact of mineral dissolution on element migrations, various parent rocks in Taiwan were chosen to react with sulfuric acid for discussing mineral dissolution rankings and element leaching during chemical weathering processes. The parent rocks include granite, andesite, actinolite schist, slate, quartz sandstone, calcium sandstone, and mudstone. Experimental results show that dissolution rates are mainly controlled by mineral structures and the chemical compositions of rocks. The ranking of rock dissolution rates is as follows: mudstone > slate > actinolite schist > quartz sandstone > granite. Dissolution rates of andesite and calcium sandstone cannot be compared due to secondary minerals being produced in experiments. Moreover, the dissolution sequences of minerals are of the following order: calcite > chlorite > muscovite and illite > augite > hornblende approximate to feldspar > quartz. This result is consistent with the stability of silicate polymerization. Most notable among the results was that the dissolution rates of clay minerals were faster than those of feldspar. Element migration ranking in dissolution processes is as follows: Mg > Ca approximate to Rb > K > Na > Sr > Al > Zr > Fe approximate to Ti. The dissolution rates of univalent elements follow the sequence of bonding forces; however, those of divalent elements are less ordered. This is due to divalent elements being rich in different mineral phases. Therefore, the study suggests that univalent elements are more suitable as chemical weathering proxy candidates. Moreover, whether ratios of Rb/Sr and K/Rb or chemical index of alteration values in sediments are suitable proxies of paleorainfall intensity is discussed in detail.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号