...
首页> 外文期刊>Oncogene >Impaired nucleotide excision repair in UV-irradiated human oral keratinocytes immortalized with type 16 human papillomavirus genome.
【24h】

Impaired nucleotide excision repair in UV-irradiated human oral keratinocytes immortalized with type 16 human papillomavirus genome.

机译:Impaired nucleotide excision repair in UV-irradiated human oral keratinocytes immortalized with type 16 human papillomavirus genome.

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We previously reported that 'high risk' human papillomaviruses (HPV) induce genetic instability in human oral keratinocytes. To understand the mechanisms of HPV-induced genetic instability, we determined the nucleotide excision repair (NER) capacity of normal (NHOK) and human papillomavirus type-16 immortalized oral keratinocytes (HOK-16B) by strand-specific removal of UV-induced cyclobutane pyrimidine dimers (CPDs) from a 16 Kb fragment of the p53 gene. In NHOK the NER activity was initiated in both DNA strands immediately, although the process in the non-transcribed strand was notably slower than that of the transcribed strand. In HOK-16B cells the initiation of CPDs removal was delayed for at least 8 h in both DNA strands, and the process was significantly slower than that in NHOK. UV-irradiation enhanced the p53 protein level more than 30-fold in NHOK, but it did not significantly alter the protein level in the HOK-16B cells. UV-irradiation also increased the p21WAF1/CIP1 protein level only in NHOK. These data indicate that 'high risk' HPV induces genetic instability by impairing NER capacity of cells. Impaired NER activity of HOK-16B cells may be implicated with their inability to enhance active p53 when challenged by genotoxic stress.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号