首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >The first solvent-directed regioselective ketal reduction of unsymmetrical glycols
【24h】

The first solvent-directed regioselective ketal reduction of unsymmetrical glycols

机译:第一个溶剂定向的区域选择性酮还原不对称乙二醇

获取原文
获取外文期刊封面目录资料

摘要

J. CHEM. SOC. PERKIN TRANS. 1 1991 The First Solvent -d i rected Reg iosel ect ive Ket aI Red uct ion of UnsymmetricaI Glycols Roger Hunter' and Birgit Bartels Chemistry Dept., University of Cape Town, Rondebosch 7700, South Africa Borane-dimethyl sulphide/TMSOTf in TH F reduces ketals of unsymmetrical vicinal diols with much higher regioselectivity than with CH,CI, as solvent. Considerable interest has been shown recently in the chemo- selective protection of unsymmetrical vicinal diols to afford the thermodynamically and kinetically less stable secondary protected derivative. All of the procedures owe their success to the site selectivity of the oxygen attached to the primary carbon atom of an appropriate cyclic derivative towards an electro- philic reagent.Cyclic derivatives studied to date have been stannylene derivatives,' phosphoranes,2 and acetals and ketal~.~,~We have recently reported that boranedimethyl sulphide/trimethylsilyl trifluoromethanesulphonate (TMSOTf) is a novel, highly potent reagent combination for reductive ketal opening. In this communication we report on the use of this reagent in the first solvent controlled regioselective ketal reduction and comment on the mechanistic implications (Scheme 1). 2 3 Scheme 1 Reagents and conditions: i, BH,-SMe,/THF or CH,Cl,/ TMSOTf/ -78 "C; ii, NaHCO,/H,O; iii, Ac,O/pyridine/DMAP (cat). A study was undertaken to ascertain the influence of various reaction conditions and substrate structure on the reaction outcome.The dimethyl and diethyl ketals of 1 -phenylethane- 1,2-diol and the diethyl and dibenzyl ketals of hexane-1,2-diol were reduced in both THF and CH,Cl,, and as seen in Table 1 the isomer ratio improved in favour of the secondary protected derivatives 2 with increasing steric bulk of the ketal groups. Furthermore, improvement in regioselectivity for 2 was more pronounced in THF. The reaction product was acetylated in each case and isomer ratios were ascertained using 'H NMR and GC. Use of bulkier reagents, e.g. tert-butyldimethylsilyl trifluoromethanesulphonate (TBDMSOTf) or 1,1,2-trimethyl- propylborane (thexylborane) resulted in a modest preference for the unwanted primary protected derivative 3. The most pronounced regioselectivity was observed using THF as solvent which resulted in higher regioselectivities compared with CH,C12 in spite of the higher temperature required for reaction.For instance, the product ratio for the reduction of the diethyl ketal of l-phenylethane-1,2-diol improved from 63 :37 to 98 :2 in favour of the desired secondary protected derivative 2 by changing from CH,Cl, to THF (Entries 3 and 4, Table 1). Similarly, for hexane-1,2-diol diethyl ketal it improved from 27: 73 to 83: 17. The glycerol dioxolane derivatives (Entries 9 and 10) with R as CH20Bn were reduced in CH,Cl, to afford almost exclusively6 the primary protected derivative 3 derived by chelation controlled (uiu Ci-I,OBn) silylation of the oxygen bonded to the secondary carbon. By comparison, in THF (entry 1 l), the ratio shifts significantly to give some secondary protected derivative 2 in which the directing influence of THF competes with the chelation controlled process.Other solvents (toluene, acetonitrile, diisopropyl ether, diethyl ether) did not influence the isomer ratio in favour of the secondary protected derivative. Slightly higher ratios were obtained by adding the borane dimethyl sulphide first, while use of 2 equiv. of borane did not influence the isomer ratio significantly, but did help to reduce the reaction time. Table 1 Product yields and isomer ratios from reductive cleavage of ketals 1 using borane dimethyl sulphide and TMSOTf (2 equiv.) followed by acet ylation Entry R R' Solvent T/"C Ratio 2-3 Yield () 1 2 Ph Ph Me Me CH,Cl, THF -78 -78 to + 10 63 :37 81 :19 60 67 3 Ph Et CH,CI, -78 to -30 63:37 84 4 Ph Et THF -78 to +10 98:2 88 5 Bu Et CH,CI, -78 to -20 27 :73 73 6 Bu Et THF -78 to +4 83: 17 72 7 Bu CH,Ph CH,Cl, -78 to -20 31:69 91 8 Bu CH2Ph THF -78 to RT 90: 10 87 9 CH,OBn Me CH,CI, -78 to -70 5:95 86 10 CH,OBn CH,Ph CH,C1, -78 to -30 5:95 69 11 CH,OBn Me THF -78 to -70 27 :73 72 12 Ph Et ether -78 to 0 63 :37 76 13 14 Ph Bu CH,Ph Et diisopropyl ether ether -78 to 0 -78 to RT 62: 38 38 :62 84 83 Mechanistically, the most plausible explanation for the solvent effect is that the Lewis basic THF assists in the silylation process, acting as a sterically demanding silylating agent.Other ethereal solvents (diethyl and diisopropyl ether, Entries 12-14) gave approximately the same ratio as the corresponding CHzClzcases which may be due to their lower Lewis basicity compared with THF. The THF is unlikely to exert a steric influence in the reduction step since this probably involves TfOBH,. This is also borne out by the result with thexyl- borane in which no improvement in isomer ratio was observed favouring the desired isomer. Hence, increasing the steric bulk of the reductant does not result in production of more of the secondary protected derivative. Yamamoto has recently shown that solvent has a marked effect on the stereoselectivity of reduction of a symmetrical bicyclic ketal using diisobutylalu- minium hydride (DIBAH), but in this case the two oxygen atoms were equivalent and oxygen site selectivity was not an issue.In conclusion, this result highlights the importance of solvent in this reaction for controlling site selectivity and points the way towards the design of more effective reagents for the transformation. We are currently working towards a more useful protecting group using this reagent and results will be communicated in due course. Experimental Typical Procedure.--To a solution of ketal (1 mmol) in dry THF or CH,Cl, (3 cm3) at -78 "C was added TMSOTf (2 mmol) followed by borane dimethyl sulphide (2 mmol). The reduction was followed to completion by TLC whereupon saturated aqueous sodium hydrogencarbonate (5 cm3) was J. CHEM.SOC. PERKIN TRANS. I 1991 added and the organic material extracted into ethyl acetate and dried (MgSO,). Removal of solvent gave an oil which was acetylated using pyridine (1 cm3) and acetic anhydride (1 cm3) with a catalytic amount of 4-dimethylaminopyridine. After the normal work-up, the final product was isolated by column chromatography and analysed by 'H NMR and GC in appropriate cases. Acknowledgements We thank the FRD, Pretoria, for financial support. References and notes 1 (a) C. W. Holzapfel, J. M. Koekemoer and C. F. Marais, S. Afr. J. Chem., 1984, 37, 19; (b) S. David and S. Hanessian, Tetrahedron, 1985, 41, 643; (c) G. Reginato, A. Ricci, S. Roelens and S. Scapecchi, J. Org. Chem., 1990,55, 5132. 2 A. M. Pautard and S. A. Evans Jr., J. Org. Chem., 1988,53,2300. 3 For an interesting case of site selectivity in sugar derivatives see: W. V. Dahlhoff, Liebigs Ann. Chem., 1990, 1025, and references cited therein. 4 (a)Y. Guindon, Y. Girard, S. Berthiaume, V. Gorys, R. Lemieux and C. Yoakim, Can. J. Chem., 1990, 68, 897; (h) R. Johansson and B. Samuelsson, J. Chem. Soc., Perkin Trans. 1, 1984, 2371. 5 R. Hunter, B. Bartels and J. P. Michael, Tetrahedron Lett., 1991, 32, 1095. 6 In the original paper (ref. 5 above), it was stated that 3 was obtained exclusively for the bis-dibenzyl dioxolane. The ratio has now been more accurately determined to be 2/3 = 5 :95. We apologise for this error. 7 K. Ishihara, A. Mori and H. Yamamoto, Tetrahedron, 1990,46,4595. Paper 1/04385D Received 1 5th August 1991 Accepted 23rd August 1991
机译:J. CHEM. SOC. PERKIN TRANS. 1 1991 The First Solvent -d i rected Reg iosel ect ive Ket aI Red uct ion of UnsymmetricaI Glycols Roger Hunter' and Birgit Bartels Chemistry Dept., University of Cape Town, Rondebosch 7700, South Africa TH F 中的硼烷-二甲基硫化物/TMSOTf 以比 CH 高得多的区域选择性还原不对称邻域二醇的酮,CI,作为溶剂。最近,人们对不对称邻二醇的化学选择性保护表现出了相当大的兴趣,以提供热力学和动力学稳定性较差的二级保护衍生物。所有程序的成功都归功于与适当的环状衍生物的初级碳原子相连的氧对亲电试剂的位点选择性。迄今为止研究的环状衍生物是亚锡衍生物、磷烷、2 和缩醛和酮~.~,~我们最近报道了硼烷二甲基硫化物/三甲基硅基三氟甲磺酸酯 (TMSOTf) 是一种用于还原性酮类开启的新型高效试剂组合。在本通讯中,我们报告了该试剂在第一个溶剂控制的区域选择性酮还原中的使用,并评论了其机理意义(方案1)。2 3 方案 1 试剂和条件:i、BH、-SMe、/THF 或 CH、Cl、/TMSOTf/-78“C;ii, NaHCO,/H,O;iii, Ac,O/吡啶/DMAP(cat)。进行了一项研究,以确定各种反应条件和底物结构对反应结果的影响。1-苯基乙烷-1,2-二醇的二甲基和二乙基缩醛以及己烷-1,2-二醇的二乙基和二苄基缩醛在THF和CH,Cl中均降低,如表1所示,随着酮基空间体积的增加,异构体比例提高,有利于二级保护衍生物2。此外,THF中2的区域选择性改善更为明显。在每种情况下,对反应产物进行乙酰化,并使用'H NMR和GC确定异构体比率。使用体积较大的试剂,例如叔丁基二甲基硅基三氟甲磺酸酯(TBDMSOTf)或1,1,2-三甲基丙基硼烷(硼烷),导致对不需要的初级保护衍生物3的适度偏好。使用THF作为溶剂观察到最明显的区域选择性,尽管反应所需的温度较高,但与CH,C12相比,区域选择性更高。例如,通过将 CH、Cl 更改为 THF,将 l-苯基乙烷-1,2-二醇的二乙基缩醛还原的产物比从 63 ∶37 提高到 98 ∶2,有利于所需的二级保护衍生物 2(表 1 条目 3 和 4)。同样,对于己烷-1,2-二醇二乙基缩醛,它从27:73提高到83:17。将R为CH20Bn的甘油二氧戊环衍生物(条目9和10)在CH,Cl中还原,以几乎完全6通过螯合控制(uiu Ci-I,OBn)硅烷化得到的初级保护衍生物3与仲碳键合的氧。相比之下,在THF(条目1 l)中,该比率显着变化,以产生一些二级保护衍生物2,其中THF的直接影响与螯合控制过程竞争。其他溶剂(甲苯、乙腈、二异丙醚、乙醚)对异构体比例没有影响,有利于二级保护衍生物。首先加入硼烷二甲基硫化物可获得稍高的比率,而使用2当量的硼烷对异构体比例没有显著影响,但有助于缩短反应时间。表1 使用硼烷二甲基硫醚和TMSOTf(2当量)还原裂解酮类化合物的产物产率和异构体比 1,然后进行乙酰化 条目 R R' 溶剂 T/“C 比率 2-3 收率 (%) 1 2 Ph Me Me CH,Cl, THF -78 -78 至 + 10 63 :37 81 :19 60 67 3 Ph et CH,CI, -78 至 -30 63:37 84 4 Ph et THF -78 至 +10 98:2 88 5 Bu et CH,CI, -78 至 -20 27 :73 73 6 Bu et THF -78 至 +4 83: 17 72 7 Bu CH,Ph CH,Cl, -78 至 -20 31:69 91 8 Bu CH2Ph THF -78 至 RT 90: 10 87 9 CH,OBn Me CH,CI, -78 至 -70 5:95 86 10 CH,OBn CH,Ph CH,C1, -78 至 -30 5:95 69 11 CH,OBn Me THF -78 至 -70 27 :73 72 12 Ph Et ether -78 至 0 63 :37 76 13 14 Ph Bu CH,Ph Et 二异丙基醚 -78 至 0 -78 至 RT 62: 38 38 :62 84 83 从机理上讲,对溶剂效应最合理的解释是,路易斯碱性四氢呋喃有助于硅烷化过程,充当空间要求苛刻的硅烷化剂。其他空灵溶剂(二乙基和二异丙基醚,条目 12-14)的比率与相应的 CHzClzcases 大致相同,这可能是由于与 THF 相比,它们的路易斯碱度较低。THF 不太可能在还原步骤中施加空间影响,因为这可能涉及 TfOBH。硼烷的结果也证实了这一点,其中没有观察到异构体比例的改善,有利于所需的异构体。因此,增加还原剂的空间体积不会导致产生更多的二级保护衍生物。Yamamoto最近表明,溶剂对使用二异丁基氢化物(DIBAH)还原对称双环酮的立体选择性有显着影响,但在这种情况下,两个氧原子是等效的,氧位点选择性不是问题。总之,这一结果强调了该反应中溶剂对控制位点选择性的重要性,并为设计更有效的转化试剂指明了方向。我们目前正在努力使用这种试剂建立一个更有用的保护组,结果将在适当的时候公布。实验典型步骤--向酮醛(1 mmol)在干燥的THF或CH,Cl溶液中加入(3 cm3)在-78“C下加入TMSOTf(2 mmol),然后加入硼烷二甲基硫化物(2 mmol)。TLC完成还原,饱和碳酸氢钠水溶液(5 cm3)为J. CHEM.SOC.佩尔金译。I于1991年加入并提取有机物质制成乙酸乙酯并干燥(MgSO,)。除去溶剂得到油,用吡啶(1cm3)和乙酸酐(1cm3)用催化量的4-二甲氨基吡啶乙酰化。正常后,通过柱层析分离最终产物,并在适当情况下用'H NMR和GC分析。致谢 我们感谢比勒陀利亚 FRD 的财政支持。参考文献和注释 1 (a) C. W. Holzapfel, J. M. Koekemoer and C. F. Marais, S. Afr. J. Chem., 1984, 37, 19;(b) S. David和S. Hanessian, Tetrahedron, 1985, 41, 643;(c) G. Reginato, A. Ricci, S. Roelens and S. Scapecchi, J. Org. Chem., 1990,55, 5132.2 A. M. Pautard 和 S. A. Evans Jr., J. Org. Chem., 1988,53,2300.3 关于糖衍生物中位点选择性的有趣案例,参见:W. V. Dahlhoff, Liebigs Ann. Chem., 1990, 1025,以及其中引用的参考文献。4 (a)Y. Guindon, Y. Girard, S. Berthiaume, V. Gorys, R. Lemieux and C. Yoakim, Can. J. Chem., 1990, 68, 897;(h) R. Johansson 和 B. Samuelsson, J. Chem. Soc., Perkin Trans. 1, 1984, 2371.5 R. Hunter, B. Bartels 和 J. P. Michael, Tetrahedron Lett., 1991, 32, 1095.6 在原始论文(上文参考文献5)中,指出3是专门为双-二苄基二氧戊环获得的。该比率现在被更准确地确定为 2/3 = 5 :95。对于此错误,我们深表歉意。7 K. Ishihara, A. Mori 和 H. Yamamoto, 四面体, 1990,46,4595.论文 1/04385D 收稿日期:1991 年 8 月 1 日 8 月 5 日 录用日期:1991 年 8 月 23 日

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号