...
首页> 外文期刊>Journal of geophysical research >The Impact of Fohn Winds on Surface Energy Balance During the 2010-2011 Melt Season Over Larsen C Ice Shelf, Antarctica
【24h】

The Impact of Fohn Winds on Surface Energy Balance During the 2010-2011 Melt Season Over Larsen C Ice Shelf, Antarctica

机译:The Impact of Fohn Winds on Surface Energy Balance During the 2010-2011 Melt Season Over Larsen C Ice Shelf, Antarctica

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We use model data from the Antarctic Mesoscale Prediction System (AMPS), measurements from automatic weather stations and satellite observations to investigate the association between surface energy balance (SEB), surface melt, and the occurrence of fohn winds over Larsen C Ice Shelf (Antarctic Peninsula) over the period November 2010 to March 2011. Fohn conditions occurred for over 20 of the time during this period and are associated with increased air temperatures and decreased relative humidity (relative to nonfohn conditions) over the western part of the ice shelf. During fohn conditions, the downward turbulent flux of sensible heat and the downwelling shortwave radiation both increase. However, in AMPS, these warming tendencies are largely balanced by an increase in upward latent heat flux and a decrease in downwelling longwave radiation so the impact of fohn on the modeled net SEB is small. This balance is highly sensitive to the representation of surface energy fluxes in the model, and limited validation data suggest that AMPS may underestimate the sensitivity of SEB and melt to fohn. There is broad agreement on the spatial pattern of melt between the model and satellite observations but disagreement in the frequency with which melt occurs. Satellite observations indicate localized regions of persistent melt along the foot of the Antarctic Peninsula mountains which are not simulated by the model. Furthermore, melt is observed to persist in these regions during extended periods when fohn does not occur, suggesting that other factors may be important in controlling melt in these regions.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号