首页> 外文期刊>Carbon: An International Journal Sponsored by the American Carbon Society >Structural study of graphite-encapsulated iron nanoparticles via chemical vapor deposition combined with spray method
【24h】

Structural study of graphite-encapsulated iron nanoparticles via chemical vapor deposition combined with spray method

机译:化学气相沉积结合喷雾法对石墨包封铁纳米颗粒的结构研究

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Interest in carbon arcs and arc products has renewed after the discovery of the carbon arc process for the production of fullcrenes by Huffman-Kratschmer 1. The availability of macroscopic quantities of fullerene-contain-ing powder immediately led to the discovery of other products of this process, such as endohedral fullcrenes, carbon nanotubes, and carbon coated nanoparticles 2-5. Although nanocrystalline ferromagnetic metals are readily available, they have a disadvantage of being prone to rapid environmental degradation due to a very high surface area to volume ratio and high reactivity. This tends to limit the potential of industrial application and scientific evaluation of the properties of nanoparticles. In this regard, a recent breakthrough is the encapsulation of magnetic nanoparticles with graphite layers, which only protects the nanoparticles and their intrinsic magnetic properties. The core structures of these graphite-encapsulated iron nanoparticles are classified into a metallic phase and a carbide phase. The role of the graphite layer is to magnetically isolate the particles from each other. Therefore, a graphite layer avoids the problems caused by interactions among the particles when they are closely compacted as magnetic bits, and provides the oxidation resistance of bare metal nanoparticles. Because of these combined attributes, the graphite-encapsulated metal nanoparticles are interesting candidates for many bio-engineering applications including drug delivery, biosensors, magnetic hyperther-mia, and magnetic contrast agents for magnetic resonance imaging. As a result, graphite-encapsulated magnetic nanoparticles have resulted in a great number of researches conducted across the world in the past a few years.
机译:在Huffman-Kratschmer发现用于生产富润烯的碳弧工艺后,人们对碳弧和电弧产物的兴趣重新燃起[1]。宏观数量的含富勒烯粉末的可用性立即导致了该过程的其他产品的发现,例如内面体富勒烯、碳纳米管和碳涂层纳米颗粒[2-5]。虽然纳米晶铁磁金属很容易获得,但由于表面积与体积比非常高,反应性高,它们具有容易快速环境降解的缺点。这往往限制了工业应用和纳米颗粒特性科学评估的潜力。在这方面,最近的一项突破是用石墨层封装磁性纳米颗粒,这只能保护纳米颗粒及其固有的磁性。这些石墨封装的铁纳米颗粒的核心结构分为金属相和碳化物相。石墨层的作用是磁性地将颗粒彼此隔离。因此,石墨层避免了颗粒之间相互作用引起的问题,当它们作为磁性钻头紧密压实时,并提供了裸金属纳米颗粒的抗氧化性。由于这些综合属性,石墨封装的金属纳米颗粒是许多生物工程应用的有趣候选者,包括药物递送、生物传感器、磁性高速 mia 和用于磁共振成像的磁性造影剂。因此,石墨封装的磁性纳米颗粒在过去几年中导致了世界各地进行的大量研究。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号