首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Partial synthesis of some diterpenoids with potential antitumour activity
【24h】

Partial synthesis of some diterpenoids with potential antitumour activity

机译:部分合成一些具有潜在抗肿瘤活性的二萜类化合物

获取原文
获取外文期刊封面目录资料

摘要

J. CHEM. soc. PERKIN TRANS. 1 1991 Partial Synthesis of Some Diterpenoids with Potential Antitumour Activity Mohammed Shaiq Ali, Mark K. Baynham, James R. Hanson and Peter B. Hitchcock The School of Molecular Sciences, University of Sussex, Brighton, Sussex, BNI 9QJ, UK The diterpenoid fungal metabolite, fujenal, has been converted into analogues of the Rabdosia d iterpenoids, ent-7 -hydroxy- 1 5-oxo- 6,7 -secoka ur- 1 6-en-6,19-d ioic acid 6,7-lactone 19-methyl ester and ent-7-acetoxy-I 9-hydroxy-l5-oxo-6,7-secokaur-l6-en-6-oicacid 6,lg-lactone which possess moderate inhibitory activity against HeLa cells. In recent years many ent-kaurenoid diterpenes have been isolated from Chinese and Japanese medicinal plants of the genus Rabdosia (Labiatae). Particular interest has centred on the antitumour activity of these diterpenoids, e.g.trichorabdal A 1.' A number of these compounds have structures in which ring B has been cleaved. Structure-activity relationships have revealed the importance of an a-methyleneketone on ring D and a synergistic increase in activity due to a second oxygen function in the molecule. The fungal metabolite fujenal 2 is a kaurenoid diterpene in which ring B has been ~leaved.~ sometimes in It is f~rrned,~ significant amounts by Gibberella fujikuroi, which is used for the commercial production of gibberellic acid. It was the object of this work to introduce the unsaturated ketone onto ring D of fujenal derivatives and to evaluate the biological activity of the products. The conformation of fujenal has been examined5 in the context of partial syntheses in this area.A well-established route for the introduction of oxygen functions at C- 15 in the tetracyclic diterpenoids involves oxidation with selenium dioxide and hydrogen peroxide or tert- butyl hydroperoxide.6-8 This reaction did not proceed cleanly with fujenal itself, presumably because of the ready oxidation of the aldehyde. However it was successful with a number of derivatives lacking the aldehyde group. Fujenal 2 undergoes an internal aldol condensation with sodium hydride to form an alcohol 3.' Allylic oxidation of this compound with selenium dioxide and hydrogen peroxide gave the 15a-alcohol4. The site of oxidation followed from changes in the I3C NMR spectrum (see Table 1).In particular the signal assigned to C-15 had moved downfield to 6 83.2 whilst those assigned to C-8 and C-16 also showed smaller downfield shifts. The stereochemistry of the hydroxylation was established by 'H NMR spectroscopic studies. Examination of molecular models reveals that the 15a-C-H bond in 3 is approximately 90" to the plane of the C-16=C-17 double bond and thus this proton should exhibit a significant allylic coupling to the 17-H protons.' Decoupling experiments based on irradiating the olefinic proton resonances established their coupling to a signal at 6 2.53 which was assigned to the 15a-H in 3. There was no effect on the 15P-proton resonance which was located by irradiating the 1Sa-signal.There was however a long-range 'W coupling from the 15P-H to that at 6 2.24 which was assigned to the 14a-proton. Further decoupling studies established the assignments, given in Fig. 1 for the 14P- and 13-protons. Decoupling studies with the hydroxylation product 4 starting from 13-H (6 2.73) led to the identification of the 14P-proton resonance and thence the 14a-proton signal. There was a long- range coupling (J 1.3 Hz) between this signal and the 15-H resonance (6 3.96). Hence this proton is a 15P-H and the hydroxy group has the a-orientation in accordance with oxidations observed previously in similar systems.'.* An alternative way of blocking the aldehyde of fujenal2 is to 12 i7 1 2 3;R=H 4;R=OH 5; R' = H, R2= H2 6; R' = Ac, R2 = H2 7; R' = Ac, R2 = a-OH, P-H 8; R' = Ac, R2= 0 'C02Me 9; R' = CHO, R2= H2 12; R = H2 10; R' = CH20H, R2= H2 13; R = CZ-OH, j3-H 14; R = 011;R' = CH20H, R2= ~L-OH, P-H 15 reduce it with sodium borohydride.' ',12 The anhydride is also reduced and a major product is the 7-hydroxy 6,194actone 5.The alcohol was then converted into its acetate 6 which was oxidized with selenium dioxide and hydrogen peroxide to give the corresponding 15~-alcohol7. Alternatively methanolysis of Table 1 13C NMR spectroscopic data (determined in CDCl,) 6 Carbonatom 3 4 7 8 13 14 15" 1 38.9 39.1 33.5 32.2 34.2 36.3 41.0 2 18.2 18.5 17.6 17.6 19.3 17.5 18.3 3 28.4 28.6 32.5 31.7 36.2 33.8 27.8 4 43.9 44.2 42.8 42.4 44.2 44.2 44.7 5 66.6 66.3 53.4 52.8 58.4 57.0 57.6 6 175.3 175.6 178.5 178.0 174.7 173.7 174.8 7 76.0 73.8 66.0 66.3 72.4 71.3 75.0 8 51.1 55.4 61.6 54.9 51.2 54.9 52.8 9 56.4 54.4 44.0 46.4 56.7 56.2 52.9 10 47.8 47.6 38.4 38.6 40.3 40.3 40.3 11 19.3 19.5 20.8 21.1 17.8 19.6 20.7 12 32.5 32.0 31.6 31.6 31.7 31.5 25.4 13 38.2 36.3 42.9 38.5 42.2 38.2 43.4 14 29.5 25.8 35.6 35.4 40.8 40.1 41.1 15 47.9 83.2 79.6 207.5 80.8 207.8 127.9 16 157.3 162.0 158.6 149.1 159.9 148.3 149.0 17 106.7 111.4 108.1 114.0 108.3 115.7 36.8 18 26.1 26.3 31.2 30.8 29.7 29.3 29.6 19 173.3 172.7 75.7 75.7 175.9 175.5 175.9 20 19.5 19.2 22.7 23.7 18.9 18.6 18.9 OMelOAc 20.9 20.7 51.5 51.4 51.5 171.6 170.7 Determined in C,D,N.14.8 4 4.86 /14 x 0 l2.5 10.5 5 Fig. 1 Coupling constants and assignments for ring D of 3 fujenal 2 with sodium methoxide and methylation of the resultant hemi-methyl ester with diazomethane gave the dimethyl ester 9.12 Reduction of the aldehyde with sodium borohydride gave a separable mixture of the 6,7-lactone 12 and the 7-alcohol 10. Oxidation of the lactone 12 with selenium dioxide and hydrogen peroxide in dioxane gave two products. The first possessed a trisubstituted double bond dH 5.60; 6, 127.93(CH), 149.05(C) and an additional methylene signal (6, 36.76) rather than a methyl signal.An X-ray crystal structure showed that the compound was the dimer 15 (see Fig. 2). The formation of a symmetrical dimer is of interest since oxidations with selenium dioxide have been regarded as being ionic in character.' The second product was assigned the 15-hydroxy structure 13 from its spectral data. Oxidation of the 7- alcohol 10 with selenium dioxide and hydrogen peroxide gave a similar 15-alcohol 11. Oxidation of the 15-alcohols 7 and 13 to the corresponding 15-ketones 8 and 14 was achieked using chromium trioxide in pyridine, a procedure which has been successful in previous work. The unsaturated ketones possessed the anticipated spectral characteristics (eg. 6, 207.82, 148.30, 115.72 for C-15, C-16 and C-17 in 14).J. CHEM. SOC. PERKIN TRANS. I 1991 When tested* at concentrations of 3 and 7.5 ~m-~,the compounds 8 and 14 reduced the growth of HeLa cells by about 50 over a period of 4 days. They are thus fairly potent inhibitors of cell growth. Thus fujenal 2, a by-product of the gibberellin fermentation, may be transformed on the one-hand to compounds with potential plant-growth regulatory acti- vity9.15 and on the other to compounds with potential tumour inhibitory activity. Experimental General Ekperimental Details.--'H and '3CNMR spectra were determined at 360 and 90.56 MHz respectively on a Bruker WM 360 spectrometer for solutions in deuteriochloroform except where otherwise stated; J values are given in Hz. TR spectra were determined as Nujol mulls.Solutions were dried over sodium sulphate. Light petroleum refers to the fraction b.p. 60-80 "C. Silica for chromatography was Merck 9385. Hydroxylation of the Anhydride 3.-ent-6P-Hydroxy-7-nor-5P-gibberell- 16-ene-5@, 19-dioic acid anhydride 3' (500 mg) and selenium dioxide (200 mg) in dioxane (8 cm3) were treated with 30 hydrogen peroxide (4 cm3) dropwise at room temperature for 1 h. The mixture was cooled in ice and poured into aqueous sodium hydrogen carbonate. The solution was extracted with dichloromethane. The extract was dried, the solvent was evaporated and the residue was chromatographed on silica. Elution with ethyl acetate-light petroleum (1 :4) gave the starting material (290 mg) followed by ent-6P,15P-dihydroxy-7- nor-5P-gibberell- 16-ene-5P, 19-dioic acid anhydride 4 (145 mg) which crystallized from ethyl acetate-light petroleum as prisms, m.p.20201 "C (Found: c,69.2; H, 7.3. C2,H2,05 requires C, 69.3; H, 7.6"/d), v,,,/cm-' 3440br, 1840, 1780 and 1660; S 0.95 (3 H, s, 20-H), 1.49 (3 H, s, 18-H), 1.85 (1 H, dd, J 5.1 and 11.8, 14- H), 2.33 (1 H,dd, J 11.8 and 1.3, 14-H), 2.73 (1 H, dd, J5.1 and 8.8, 13-H), 3.96 (1 H, d, J 1.3, 15-H), 4.55 (1 H, s, 7-H) and 5.19 and 5.24 (each 1 H, s, 17-H). Hydroxylation ojthe Ester 10.-ent-7-Hydroxy-6,7-secokaur-16-ene-6,19-dioic acid 6,19-dimethyl ester' 10 (1.5 g) in dioxane (24 cm3) was treated with selenium dioxide (600 mg) and hydrogen peroxide (30, 12 cm3) at room temperature for 1 h. The products were recovered as above to give a gum which was chromatographed on silica. Elution with ethyl acetate-light petroleum (2:3) gave ent-7,15P-dihydro.xy-6,7-secokaur-16-ene-6,19-dioic acid 6,19-dirnethyl ester 11 (530 mg) as a gum, (Found: C, 67.1; H, 8.6.C2,H3,06 requires C, 67.0; H, 8.7), v,,,/cm-' 3481, 1733, 1719 and 1654; 6 1.16 (3 H, s, 20-H), 1.49 (3 H, s, 18-H), 3.61 and 3.62 (each 3 H, s, OMe), 3.76 and 4.28 (each 1 H, d, J 11,7-H), 4.20 (1 H, br s, 15-H) and 5.08 and 5.20 (each 1 H, br s, 17-H). On one occasion a 7,16,17-triol was isolated as a gum, (Found: C, 64.4; H, 8.6. C22H,,O7 requires C, 64.1; H, 8.873, v,,,/cm-' 3400, 1730 and 1710; 6 1.30 (3 H, s, 20-H), 1.37 (3 H, s, 18-H), 3.53 (1 H, d, J 11.7,7-H) 3.63 and 3.69 (each 3 H, s, OMe), 3.77 (1 H, d, J 12.8, 17-H), 4.09 (1 H, d, J 11.7, 7-H) and 4.80 (1 H, d, J 12.8, 17-H).Hj,dro.xylation of' the Ester 12.-ent-7-Hydroxy-6,7-seco-kaur-l6-ene-6,19-dioic acid 6,7-lactone 19-methyl ester' 12 (1 g) in dioxane (30 cm3) was treated with selenium dioxide (450 mg) and hydrogen peroxide (30; 8 cm3) at room temperature for 1 h. The products were recovered as above to give a gum which was chromatographed on silica. Elution with ethyl acetate-light petroleum (3 :7) gave the 17,17'-dimer of ent-7- * We thank Dr. E. A. Hamilton (ICI Pharmaceuticals) for carrying out these determinations. J. CHEM. SOC. PERKIN TRANS. 1 1991 268 1 Fig. 2 X-Ray molecular structure of the 17,17'-dimer (15) Table 2 Crystal data and structure refinement details for the X-ray Table 3 Fractional atomic co-ordinates ( x SO4) structure 15 X Y Formula C42H5208 M 684.9 4 233(2) 5 099(5) 3 673( 1) Crystal size (mm) 0.20 x 0.15 x 0.10 5 556(2) 5 128(5) 4 632( 1) Crystal system monoclinic 5 851(2) 2 085(4) 3 680( I) Space group P2,(no. 4) 6 834(2) 1442 2 989( 1) a, b, c', (A), S 11.759(9), 7.618(2), 21.409(7), 5 371(3) 6 977(6) 2 350(2) 105.83(4) 5 149(4) 7 925(6) 2 927(2) v (A)3 1845.1 6 145(3) 7 605(6) 3 526(2) F(OO0) 2, 1.23, 736 6 295(3) 5 661(5) 3 719(2) Z, D,(g.~m-~), p Mo-Ka (cm-') 0.8 6 354(3) 4 539(5) 3 114(2) Total unique reflections 3497 6 316(3) 2 635(5) 3 288(2) Significant reflections I > a(1) 2319 7 493(3) 1971(6) 2 541(2) R 0.039 6 693(3) 2 544(6) 1 892(2) R' 0.048 6 159(3) 4 414(5) 1 887(1) 5 522(3) 4 952(5) 2 415(2) 5 409(3) 4 852(6) 1 178(2) 4 776(3) 3 318(7) 758(2)hydroxy-6,7-secokaur- 15-ene-6,19-dioic acid 6,7-lactone 19-5 524(3) 1654(6) 860( 2) methyl ester 15 which crystallized from pyridine as prisms, m.p.5 785(3) 1 158(6) 1579(2) 250 "C (Found: C, 72.7; H, 8.5. C42H5808 requires C, 73.0; H, 7 404(3) 2 608(6) I386(2) 8.5), v,,,/cm-' 1729; G(C,D,N) 1.34 (3 H, s, 20-H), 1.47 (3 6 766(3) 2 098(6) 817(2) H, s, 18-H), 2.97 (1 H, s, 5-H), 3.69 (3 H, s, OMe), 3.80 and 4.68 7 052(3) 2 142(7) 168(2) 7 469(3) 5 412(7) 4 232(2) (each 1 H, d, J 12, 7-H) and 5.60 (1 H, br s, 15-H). Further 5 236(3) 5 202(6) 3 979(2) elution with ethyl acetate-light petroleum (2: 3) gave ent-7,lSP- 4 309(3) 4 099(6) 2 310(2) dihydro.xy-6,7-secokaur-16-ene-6,19-dioic acid 6,7-lactone 19- 4 612(3) 4 873(8) 4 935(2) methyl ester 13 (560 mg) which crystallized from ethyl acetate as 10 134(3) 5 63 l(5) -3 599(1) needles, m.p.248-250°C (Found: C, 69.6; H, 8.4. C2,H3,05 9 991(2) 3 510(5) -4 323 I) requires C, 69.6; H, 8.3), v,,,/cm-' 3459 and 1724; 6 1.24 10 974(2) 2 457(5) -2 751(1) (3 H, S, 20-H), 1.34 (3 H, S, 18-H), 2.86 (1 H, S, 5-H), 3.69 (3 H, S, 10 273(2) 1351(4) -2 OW(I) 7 568(3) 5 736(6) -2 924(2) OMe), 4.03 (1 H, br s, 15-H), 4.37 and 4.43 (each 1 H, d, J 13, 7- 7 528(4) 5 924(7) -3 634(2)H) and 5.12 and 5.23 (each 1 H, s, 17-H). 7 607(4) 4 139( 7) -3 929(2) 8 769(3) 3 199(6) -3 616(2) Hydroxylution of the Lactone 6.-ent- 7-Ace toxy- 19- hydroxy- 8 938(3) 3 107(6) -2 860(2) 6,7-secokaur-l6-en-6-oic acid 6,194actone 612 (1.03 g) in 10 123(3) 2 301(6) -2 546(2) 9 304(4) 1085(6) -1 71 l(2)dioxane (30 cm3) was treated with selenium dioxide (400 mg) 8 998(3) 2 716(6) -1 399(2)and hydrogen peroxide (30; 8 cm3) for 1 h.The products were 8 223(3) 4 087(5) -1 889(2)recovered as above to give a gum which was chromatographed 8 653(3) 4 736(5) -2 482(2) on silica. Elution with ethyl acetate-light petroleum (3 :7) gave 7 877(3) 5 615(6) -1 495(2) 15p, 19-dihydroxy-6,7-secokuur-ent-7-aceto.u~-16-en-6-oic acid 8 798(4) 6 168(6) -866(2) 6,19-luctonc~7 (9 13 mg) which crystallized from light petroleum 9 460(3) 4 590(6) -482( 2) as needles, m.p. 162 "C (Found: C, 70.1; H, 8.6.C22H3205 10 058(3) 3 610(6) -925(2) 8 279(3) 2 230(6) -922(2)requires C, 70.2; H, 8.679, v,,,/cm-' 3472, 1765 and 1741; 6 8 557(3) 3 239(6) -407(2)1.12 (3 H, S, 20-H), 1.27 (3 H, S, 18-H), 2.16 (3 H, S, OAC), 3.75 8 085(4) 3 335(7) 182(2) and 4.04 (each 1 H, d, J9, 19-H), 4.25 (1 H, br s, 15-H), 4.28 and 8 686(4) 1 306(8) -3 865(2) 4.41 (each 1 H,d, J 12,7-H)and 5.1 1 and 5.23 (each 1 H, s, 17-H). 9 719(3) 4 243(7) -3 817(2) 9 676(3) 6 034(6) -2 298(2) 0.uidrtion of the Hydro.uj1 Lactone 13 with Chromium 10 745(4) 4 558(9) -4 609( 2) Trio.uirle--The above lactone 13 (520 mg) was treated with a solution of chromium trioxide (5 g) in a mixture of pyridine (9 cm3) and dichloromethane (125 cm3) for 30 min at room solvent was evaporated to give a gum which was chromato- temperature.Aqueous sodium hydroxide was added and the graphed on silica. Elution with ethyl acetate-light petroleum product was isolated with dichloromethane. The extract was (3:7) gave ent-7-hydroxy- 15-oxo-6,7-secokuur- 16-ene-6,19-dioic washed with aqueous copper sulphate and water and dried. The acid 6,7-lactone 19-methyl ester 14 (450 mg) which crystallized from ethyl acetate as plates, m.p. 160 "C (Found: C, 69.7; H, 7.9. C21H2805 requires C, 67.0; H, 7.8), v,,,/cm-' 1723 and 1646; S 1.24 (3 H, S, 20-H), 1.40 (3 H, S, 18-H), 2.85 (1 H, S, 5-H), 3.16 (1 H, br s, 13-H), 3.69 (3 H, s, OMe), 3.80 and 4.60 (each 1 H, d, J 13,7-H) and 5.37 and 5.97 (each 1 H, s, 17-H). Oxidation of the Hydroxy Lactone 7 with Chromium Trioxide.-The above hydroxy lactone 7(600 mg) was treated with a solution of chromium trioxide (6 g) in pyridine (10 cm3) and dichloromethane (200 cm3) for 30 min at room temperature.Aqueous sodium hydroxide was added and the product was recovered in dichloromethane. The organic layer was washed with aqueous copper sulphate, water and dried. The solvent was evaporated to give a residue which was chromatographed on silica. Elution with ethyl acetate-light petroleum (1 :3) gave ent-7-acetoxy-19-hydroxy-15-oxo-6,7-secokaur-16-en-6-oic acid 6,19-lactone 8 (475 mg) as a foam (Found: C, 67.7; H, 8.2. C2,H3,0S*H20 requires C, 67.3; H, 8.2), vmax/cm-' 1734br and 1652; 6 1.13 (3 H, s, 20-H), 1.20 (3H,s, 18-H),3.11 (1 H, brs, 13-H),3.77and4.03(each 1 H,d, J 9, 19-H), 4.23 and 4.58 (each 1 H, d, J 11,7-H) and 5.27 and 5.92 (each 1 H, br s, 17-H).Crystal Structure Determination.-A summary of the crystal data and structure refinement details are given in Table 2. The data were collected from a crystal mounted on an Enraf-Nonius CAD4 diffractometer operating in the 8-28 mode with A8 = (0.8 + 0.35 tan 0)' and a maximum scan time of one minute and with monochromated Mo-Ka radiation (A = 0.710 69 A). Unique reflections were measured for 2 c 0 30(F2) were used in the refinement where o(F2) = (02(1)+ (0.041)2)*/L,. The structure was solved by direct methods using SHELXS-86.I6 Refinement was by full matrix least squares with non-hydrogen atoms anisotropic and weights of w = l/02(F).Hydrogen atoms were held fixed at calculated positions with Uiso= 1.3Ue, for the parent carbon atom. Programs from the Enraf-Nonius SDP-Plus package were run on a Micro-Vax computer. Fractional atomic co- ordinates are shown in Table 3. The remaining crystallographic data has been deposited at the Cambridge Crystallographic Data Centre.* * For full details of the CCDC deposition scheme see 'Instructions for Authors,'J. Chem. SOC.,Perkin Trans. I, 1991, Issue 1. J. CHEM. SOC. PERKIN TRANS. I 1991 Acknowledgements We thank the AFRC and the British Council for financial support and ICI Pharmaceuticals for a gift of fujenal. Part of this work was carried out under the HEJ Institute, University of Karachi-University of Sussex Link Scheme.We thank Professor Atta-ur-Rahman and Dr. D. R. M. Walton for establishing this link. We thank Dr. N. F. Elmore (ICI Pharmaceuticals) for arranging the bio-assay. References 1 E. Fujita and M. Node in Progress in the Chemistry of Organic Natural Products, 1984,46,78. 2 K. Fuji, M. Node, M. Sai, E. Fujita, S. Takeda and N. Unemi, Chem. Pharm. Bull., 1989,37, 1472 and refs. therein. 3 B. E. Cross, R. H. B. Galt and J. R. Hanson, J. Chem. Soc., 1963, 5052. 4 B. E. Cross, R. H. B. Galt, J. R. Hanson, P. J. Curtis, J. F. Grove and A. Morrison, J, Chem. SOC.,1963, 2937. 5 A. G. Avent, C. Chamberlain, J. R. Hanson and P. B. Hitchcock, J. Chem. Soc., Perkin Trans. I, 1985,2493. 6 A. Carcia-Granados, A. Parra-Sanchez and A. Y. Pena Carrillo, Anales de Quim., 1980, 76, 85. 7 S. C. Dolan and J. MacMillan, J. Chem. SOC.Perkin Trans. I, 1985, 2741. 8 A. G. Avent, J. R. Hanson, P. B. Hitchcock and B. H. de Oliveira, J. Chem. Soc., Perkin Trans. I, 1990,2661. 9 J. R. Hanson, C. L. Willis and K. P. Parry, J. Chem. Soc., Perkin Trans. 1, 198 1, 3020. 10 S. Sternhell, Pure Appl. Chem., 1964, 14, 15. 11 R. H. B. Galt and J. R. Hanson, J. Chem. Soc., 1965,1565. 12 M. K. Baynham, J. M. Dickinson, J. R. Hanson and P. B. Hitchcock, J. Chem. Soc., Perkin Trans. 1, 1987, 1987. 13 E. N. Trachtenberg in Oxidation,ed. R. L. Augustine, Marcel Decker, New York, 1970, vol. 1, ch. 3, p. 119. 14 J. R. Cannon, P. W. Chow, P. R. Jefferies and G. V. Meehan, Aust. J. Chem., 1966,19,861. 15 M. K. Baynham, J. M. Dickinson and J. R. Hanson, Phytochemistry, 1988,27,761 and refs. therein. 16 G. M. Sheldrick in Crystallographic Computing 3, eds. G. M. Sheldrick, C. Kruger and R. Goddard, Oxford University Press, 1985, pp. 175-1 89. Paper 1/03258E Received 1st July 199 1 Accepted 15th July 199 1
机译:J. CHEM. soc. PERKIN TRANS. 1 1991 Partial Synthesis of Some Diterpenoids with Potential Antitumour Activity Mohammed Shaiq Ali, Mark K. Baynham, James R. Hanson and Peter B. Hitchcock The School of Molecular Sciences, University of Sussex, Brighton, Sussex, BNI 9QJ, UK 二萜类真菌代谢物fujenal已被转化为Rabdosia d iterpenoids的类似物, ent-7-羟基-1,5-氧代-6,7-secoka-ur-1,6-烯-6,19-d碘酸6,7-内酯19-甲酯和ent-7-乙酰氧基-I 9-羟基-l5-氧代-6,7-secokaur-l6-烯-6-oicacid 6,lg-内酯,对HeLa细胞具有中等抑制活性。近年来,许多ent-贝壳菜类二萜已从Rabdosia属(唇形科)的中国和日本药用植物中分离出来。特别感兴趣的是这些二萜类化合物的抗肿瘤活性,例如毛滴虫A 1。这些化合物中有许多具有环 B 被切割的结构。构效关系揭示了 α-亚甲基酮在环 D 上的重要性,以及由于分子中的第二氧官能团而导致活性的协同增加。真菌代谢产物fujenal 2是一种贝壳菜类二萜,其中环B已被~叶~,有时在它f~rrned,~被藤黑赤霉菌大量使用,用于赤霉酸的商业生产。本工作的目的是将不饱和酮引入富士醛衍生物的环D上,并评估产物的生物活性。fujenal 的构象已经在该领域的部分合成背景下进行了检查5。在四环二萜类化合物中引入C-15氧官能团的公认途径涉及与二氧化硒和过氧化氢或叔丁基过氧化氢的氧化.6-8该反应没有与fujenal本身进行干净,可能是因为醛的现成氧化。然而,它成功地处理了许多缺乏醛基的衍生物。Fujenal 2 与氢化钠进行内部醛醇缩合,形成醇 3。该化合物与二氧化硒和过氧化氢的烯丙基氧化得到15a-醇4。氧化位点来自I3C NMR谱的变化(见表1)。特别是,分配给C-15的信号已经向下场移动到6 83.2,而分配给C-8和C-16的信号也显示出较小的下场偏移。羟基化的立体化学是通过'H NMR波谱研究建立的。对分子模型的检查表明,3 中的 15a-C-H 键距离 C-16=C-17 双键平面约 90 英寸,因此该质子应表现出与 17-H 质子的显着烯丙基偶联。基于辐照烯烃质子共振的解耦实验确定了它们与6 2.53处的信号的耦合,该信号被分配给3中的15a-H。对通过照射1Sa信号定位的15P-质子共振没有影响,然而,从15P-H到6 2.24处的长程'W耦合被分配给14a-质子。进一步的解耦研究确定了14P和13质子的分配,如图1所示。从 13-H (6, 2.73) 开始,用羟基化产物 4 进行解耦研究,确定了 14P-质子共振,从而鉴定了 14a-质子信号。该信号与15-H谐振(6,3.96)之间存在长距离耦合(J 1.3 Hz)。因此,该质子是 15P-H,羟基具有 a 取向,符合先前在类似系统中观察到的氧化。* 阻断fujenal2醛的另一种方法是12 i7 1 2 3;R=H 4;R=OH 5;R' = H, R2= H2 6;R' = 交流, R2 = H2 7;R' = Ac, R2 = a-OH, P-H 8;R' = Ac, R2= 0 'C02Me 9;R' = CHO, R2= H2 12;R = H2 10;R' = CH20H, R2= H2 13;R = CZ-OH, j3-H 14;R = 011;R' = CH20H, R2= ~L-OH, P-H 15 用硼氢化钠还原。',12 酸酐也被还原,主要产物是7-羟基6,194内酯5.然后将醇转化为其乙酸盐6,用二氧化硒和双氧水氧化得到相应的15~-醇7.或者,甲烷分解表13C NMR波谱数据(在CDCl中确定),6碳原子3 4 7 8 13 14 15“ 1 38。 9 39.1 33.5 32.2 34.2 36.3 41.0 2 18.2 18.5 17.6 17.6 19.3 17.5 18.3 3 28.4 28.6 32.5 31.7 36.2 33.8 27.8 4 43.9 44.2 42.8 42.4 44.2 44.2 44.7 5 66.6 66.3 53.4 52.8 58.4 57.0 57.6 6 175.3 175.6 178.5 178.0 174.7 173.7 174.8 7 76.0 73.8 66.0 66.3 72.471.3 75.0 8 51.1 55.4 61.6 54.9 51.2 54.9 52.8 9 56.4 54.4 44.0 46.4 56.7 56.2 52.9 10 47.8 47.6 38.4 38.6 40.3 40.3 40.3 11 19.3 19.5 20.8 21.1 17.8 19.6 20.7 12 32.5 32.0 31.6 31.6 31.7 31.5 25.4 13 38.2 36.3 42.9 38.5 42.2 38.2 43.4 14 29.5 25.8 35.6 35.4 40.8 40.1 41.1 15 47.9 83.2 79.6 207.5 80.8 207.8 127.9 16 157.3 162.0 158.6 149.1 159.9 148.3 149.0 17106.7 111.4 108.1 114.0 108.3 115.7 36. 8 18 26.1 26.3 31.2 30.8 29.7 29.3 29.6 19 173.3 172.7 75.7 75.7 175.9 175.5 175.9 20 19.5 19.2 22.7 23.7 18.9 18.6 18.9 OMelOAc 20.9 20.7 51.5 51.4 51.5 171.6 170.7 在C,D,N.14.8 4 4.86 /14 x 0 l2.5 10.5 [ 5 图1 3富乙烯醛2环D与甲醇钠的偶联常数和分配以及所得半甲酯的甲基化用重氮甲烷得到9.12二甲酯,用硼氢化钠还原醛,得到6,7-内酯12和7-醇10的可分离混合物。内酯12与二氧化硒和二氧六环中的过氧化氢氧化得到两种产物。第一个具有三取代双键[dH 5.60; 6, 127.93(CH), 149.05(C)]和额外的亚甲基信号(6,36.76)而不是甲基信号。X射线晶体结构表明,该化合物为二聚体15(见图2)。对称二聚体的形成是有趣的,因为与二氧化硒的氧化被认为是离子性质的。第二种产物从其光谱数据中被分配为15%-羟基结构13。将7-醇10与二氧化硒和过氧化氢氧化得到类似的15%醇11.使用吡啶中的三氧化铬将 15%-醇 7 和 13 氧化为相应的 15-酮 8 和 14,该过程在以前的工作中已经成功。不饱和酮具有预期的光谱特性(例如,14 中的 C-15、C-16 和 C-17 为 6、207.82、148.30、115.72)。I 1991 当在浓度为 3 和 7.5 ~m-~ 下测试*时,化合物 8 和 14 在 4 天内使 HeLa 细胞的生长减少了约 50%。因此,它们是相当有效的细胞生长抑制剂。因此,赤霉素发酵的副产物fujenal 2一方面可以转化为具有潜在植物生长调节活性9.15的化合物,另一方面可以转化为具有潜在肿瘤抑制活性的化合物。--'H 和 '3CNMR 光谱在 360 和 90 处测定。除非另有说明,否则在布鲁克 WM 360 光谱仪上分别为 56 MHz,用于氘氯仿溶液;J 值以 Hz 为单位给出。 TR 光谱被确定为 Nujol mulls。溶液用硫酸钠干燥。轻质石油是指b.p.60-80“C.色谱用二氧化硅的馏分是默克9385。用30%过氧化氢(4cm3)在室温下滴加处理3.-ent-6P-羟基-7-nor-5P-赤霉烯-16-烯-5@,19-二酸酐3'(500mg)和二氧化硒(200mg)在二氧六环(8cm3)中的羟基化反应1小时。将混合物在冰中冷却并倒入碳酸氢钠水溶液中。溶液用二氯甲烷萃取。将提取物干燥,蒸去溶剂,并将残留物在二氧化硅上色谱。用乙酸乙酯-轻质石油(1:4)洗脱得到起始原料(290mg),然后是ent-6P,15P-二羟基-7-nor-5P-赤霉烯-16-烯-5P,19-二酸酐4(145mg),其由乙酸乙酯-轻质石油结晶为棱柱,m.p.20&201“C(发现:c,69.2;H,7.3。C2,H2,05 需要 C, 69.3;H, 7.6“/d), v,,,/cm-' 3440br, 1840, 1780 和 1660;S 0.95 (3 H, s, 20-H), 1.49 (3 H, s, 18-H), 1.85 (1 H, dd, J 5.1 和 11.8, 14- H), 2.33 (1 H,dd, J 11.8 和 1.3, 14-H), 2.73 (1 H, dd, J5.1 和 8.8, 13-H), 3.96 (1 H, d, J 1.3, 15-H), 4.55 (1 H, s, 7-H) 和 5.19 和 5.24 (各 1 H, s,17-H)。羟基化酸酯 10.-ent-7-羟基-6,7-二碳-16-烯-6,19-二甲酸 6,19-二甲酯' 10 (1.5 g) 在二氧六环 (24 cm3) 中,在室温下用二氧化硒 (600 mg) 和过氧化氢 (30%,12 cm3) 处理 1 小时。如上所述回收产物,得到在二氧化硅上色谱的树胶。用乙酸乙酯-轻质石油(2:3)洗脱得到ent-7,15P-二氢.xy-6,7-secokaur-16-ene-6,19-二酸6,19-二酸6,19-二乙酯11(530mg)作为胶,(发现:C,67.1;H, 8.6.C2,H3,06 需要 C, 67.0;H, 8.7%), v,,,/cm-' 3481, 1733, 1719 和 1654;6 1.16 (3 H, s, 20-H), 1.49 (3 H, s, 18-H), 3.61 和 3.62 (各 3 H, s, OMe), 3.76 和 4.28 (各 1 H, d, J 11,7-H), 4.20 (1 H, br s, 15-H) 和 5.08 和 5.20 (各 1 H, br s, 17-H)。有一次,7,16,17-三醇被分离为树胶,(发现:C,64.4;H,8.6。C22H,,O7 需要 C, 64.1;H, 8.873, v,,,/cm-' 3400, 1730 和 1710;6 1.30 (3 H, s, 20-H)、1.37 (3 H, s, 18-H)、3.53 (1 H, d, J 11.7,7-H)、3.63 和 3.69 (各 3 H, s, OMe)、3.77 (1 H, d, J 12.8、17-H)、4.09 (1 H, d, J 11.7, 7-H) 和 4.80 (1 H, d, J 12.8, 17-H)。将二氧六环(30 cm3)中的酯12.-ent-7-羟基-6,7-seco-kaur-l6,19-二酸酯-6,7-内酯-19-甲酯'12(1g)在二氧六环(30 cm3)中用二氧化硒(450mg)和过氧化氢(30%;8 cm3)在室温下处理1 h。如上所述回收产物,得到在二氧化硅上色谱的树胶。用乙酸乙酯-轻质石油 (3 :7) 洗脱得到 ent-7- 的 17,17'-二聚体 * 我们感谢 E. A. Hamilton 博士(ICI Pharmaceuticals)进行这些测定。J. CHEM. SOC. PERKIN TRANS. 1 1991 268 1 图2 17,17'-二聚体的X射线分子结构 (15) 表2 X射线的晶体数据和结构细化细节 表3 分数原子坐标(x SO4)结构 15 X Y 分子式 C42H5208 M 684.9 4 233(2) 5 099(5) 3 673( 1) 晶体尺寸 (mm) 0.20 x 0.15 x 0.10 5 556(2) 5 128(5) 4 632( 1) 晶体体系单斜晶系 5 851(2) 2 085(4) 3 680( I) 空间群 P2,(编号 4) 6 834(2) 1442 2 989( 1) a, b, c', (A), S 11.759(9), 7.618(2), 21.409(7), 5 371(3) 6 977(6) 2 350(2) 105.83(4) 5 149(4) 7 925(6) 2 927(2) v (A)3 1845.1 6 145(3) 7 605(6) 3 526(2) F(OO0) 2, 1.23, 736 6 295(3) 5 661(5) 3 719(2) Z, D,(g.~m-~), p Mo-Ka (cm-') 0.8 6 354(3) 4 539(5) 3 114(2) 总唯一反射 3497 6 316(3) 2 635(5) 3 288(2) 重要反射 [I > a(1)] 2319 7 493(3) 1971(6) 2 541(2) R 0.039 6 693(3) 2 544(6) 1 892(2) R' 0.048 6 159(3) 4 414(5) 1887(1) 5 522(3) 4 952(5) 2 415(2) 5 409(3) 4 852(6) 1 178(2) 4 776(3) 3 318(7) 758(2)羟基-6,7-二甲醚-15-烯-6,19-二酸 6,7-内酯 19-5 524(3) 1654(6) 860( 2) 甲酯 15 由吡啶结晶为棱镜, M.P.5 785(3) 1 158(6) 1579(2) 250“C (发现: C,72.7;H,8.5。C42H5808 要求 C,73.0;H, 7 404(3) 2 608(6) I386(2) 8.5%), v,,,/cm-' 1729;G(C,D,N) 1.34 (3 H, s, 20-H), 1.47 (3 6 766(3) 2 098(6) 817(2) H, s, 18-H), 2.97 (1 H, s, 5-H), 3.69 (3 H, s, OMe), 3.80 和 4.68 7 052(3) 2 142(7) 168(2) 7 469(3) 5 412(7) 4 232(2) (各 1 H, d, J 12, 7-H) 和 5.60 (1 H, br s, 15-H)。进一步 5 236(3) 5 202(6) 3 979(2) 用乙酸乙酯-轻质石油 (2: 3) 洗脱得到 ent-7,lSP- 4 309(3) 4 099(6) 2 310(2) 二氢.xy-6,7-七谷-16-烯-6,19-二酸 6,7-内酯 19- 4 612(3) 4 873(8) 4 935(2) 甲酯 13 (560 mg),由乙酸乙酯结晶为 10 134(3) 5 63 l(5) -3 599(1) 针, 熔点248-250°C(发现:C,69.6;H,8.4。C2,H3,05 9 991(2) 3 510(5) -4 323 I) 需要 C, 69.6;H, 8.3%), v,,,/cm-' 3459 和 1724;6 1.24 10 974(2) 2 457(5) -2 751(1) (3 H, S, 20-H), 1.34 (3 H, S, 18-H), 2.86 (1 H, S, 5-H), 3.69 (3 H, S, 10 273(2) 1351(4) -2 OW(I) 7 568(3) 5 736(6) -2 924(2) OMe), 4.03 (1 H, br s, 15-H), 4.37 和 4.43(各 1 H, d, J 13, 7- 7 528(4) 5 924(7) -3 634(2)H) 和 5.12 和 5.23 (各 1 H, s, 17-H)。7 607(4) 4 139( 7) -3 929(2) 8 769(3) 3 199(6) -3 616(2) 内酯的羟基洗脱 6.-烯-7-乙酸-19-羟基-8 938(3) 3 107(6) -2 860(2) 6,7-三角环-l6-烯-6-酸 6,194内酯 612 (1.03 g) 在 10 123(3) 2 301(6) -2 546(2) 9 304(4) 1085(6) -1 71 l(2)二氧六环 (30 cm3) 用二氧化硒 (400 mg) 处理 8998(3) 2 716(6) -1 399(2)和过氧化氢(30%;8 cm3)1 h,产物分别为8 223(3) 4 087(5) -1 889(2),如上所述回收,得到二氧化硅色谱8 653(3) 4 736(5) -2 482(2)的树胶。用乙酸乙酯-轻质石油(3 :7)洗脱得到7 877(3) 5 615(6) -1 495(2) 15p,19-二羟基-6,7-secokuur-ent-7-aceto.u~-16-烯-6-酸 8 798(4) 6 168(6) -866(2) 6,19-luctonc~7 (9 13 mg),其由轻质石油结晶而成 9 460(3) 4 590(6) -482( 2) 作为针,熔点:162“C(发现: C,70.1;H, 8.6.C22H3205 10 058(3) 3 610(6) -925(2) 8 279(3) 2 230(6) -922(2)需要C, 70.2;H, 8.679, v,,,/cm-' 3472, 1765 和 1741;6 8 557(3) 3 239(6) -407(2)1.12 (3 H, S, 20-H), 1.27 (3 H, S, 18-H), 2.16 (3 H, S, OAC), 3.75 8 085(4) 3 335(7) 182(2) 和 4.04 (各 1 H, d, J9, 19-H), 4.25 (1 H, br s, 15-H), 4.28 和 8 686(4) 1 306(8) -3 865(2) 4.41 (各 1 H,d, J 12,7-H)和 5.1 1 和 5.23 (各 1 H, s, 17-H)。9 719(3) 4 243(7) -3 817(2) 9 676(3) 6 034(6) -2 298(2) 0.Hydro.uj1 内酯 13 含铬 10 745(4) 4 558(9) -4 609( 2) Trio.uirle--将上述内酯13(520mg)用三氧化铬(5g)在吡啶(9cm3)和二氯甲烷(125cm3)的混合物中处理30分钟,在室溶剂中蒸发溶剂,得到胶这是色度温度。加入氢氧化钠水溶液,并在二氧化硅上绘制图形。用乙酸乙酯洗脱-轻质石油产品,用二氯甲烷分离。将提取物(3:7)得到ent-7-羟基-15-氧代-6,7-secokuur-16-烯-6,19-二元,用硫酸铜水溶液和水洗涤并干燥。由乙酸乙酯结晶的酸性6,7-内酯19-甲酯14(450mg),熔点。160“C(发现:C,69.7;H,7.9。C21H2805 要求 C, 67.0;H, 7.8%), v,,,/cm-' 1723 和 1646;S 1.24 (3 H, S, 20-H), 1.40 (3 H, S, 18-H), 2.85 (1 H, S, 5-H), 3.16 (1 H, br s, 13-H), 3.69 (3 H, s, OMe), 3.80 和 4.60 (各 1 H, d, J 13,7-H) 和 5.37 和 5.97 (各 1 H, s, 17-H)。羟基内酯7与三氧化二铬的氧化-上述羟基内酯7(600mg)在室温下用三氧化铬(6g)在吡啶(10cm3)和二氯甲烷(200cm3)中的溶液处理30分钟。加入氢氧化钠水溶液,在二氯甲烷中回收产物。有机层用硫酸铜水溶液洗涤,水洗涤并干燥。将溶剂蒸发,得到残留物,并在二氧化硅上色谱。用乙酸乙酯-轻质石油(1:3)洗脱得到ent-7-乙酰氧基-19-羟基-15-氧代-6,7-谷氨基-16-烯-6-酸6,19-内酯8(475mg)作为泡沫(发现:C,67.7;H,8.2。C2,H3,0S*H20 要求 C, 67.3;H, 8.2%), vmax/cm-' 1734br 和 1652;6 1.13 (3 H, s, 20-H), 1.20 (3H,s, 18-H), 3.11 (1 H, brs, 13-H), 3.77 和 4.03 (各 1 H,d, J 9, 19-H), 4.23 和 4.58 (各 1 H, d, J 11,7-H) 和 5.27 和 5.92 (各 1 H, br s, 17-H)。晶体结构测定-表2给出了晶体数据和结构细化细节的摘要。数据是从安装在 Enraf-Nonius CAD4 衍射仪上的晶体收集的,该衍射仪以 8-28 模式运行,A8 = (0.8 + 0.35 tan 0)',最大扫描时间为 1 分钟,使用单色 Mo-Ka 辐射 (A = 0.710 69 A)。测量了 2 c 0 30(F2) 的反射用于 o(F2) = (02(1)+ (0.041)2)*/L,。使用SHELXS-86通过直接方法求解该结构。I6 精炼是通过非氢原子各向异性的全矩阵最小二乘法进行的,权重为 w = l/02(F)。对于母碳原子,氢原子固定在计算位置,Uiso= 1.3Ue。Enraf-Nonius SDP-Plus 软件包中的程序在 Micro-Vax 计算机上运行。分数原子坐标如表3所示。其余的晶体学数据已存放在剑桥晶体学数据中心。 * 有关CCDC沉积方案的完整详细信息,请参阅“作者须知”,J. Chem. SOC.,Perkin Trans。I,1991 年,第 1 期。J. CHEM. SOC. PERKIN 译.I 1991 致谢 我们感谢 AFRC 和英国文化协会的财政支持,以及 ICI Pharmaceuticals 的捐赠。这项工作的一部分是在卡拉奇大学-苏塞克斯大学HEJ研究所下进行的,我们感谢Atta-ur-Rahman教授和D. R. M. Walton博士建立这种联系。我们感谢 N. F. Elmore 博士 (ICI Pharmaceuticals) 安排生物测定。参考文献 1 E. Fujita 和 M. Node in Progress in the Chemistry of Organic Natural Products, 1984,46,78.2 K. Fuji、M. Node、M. Sai、E. Fujita、S. Takeda 和 N.Unemi, Chem. Pharm. Bull., 1989,37, 1472 and refs.其中。3 B. E. Cross, R. H. B. Galt 和 J. R. Hanson, J. Chem. Soc., 1963, 5052.4 B. E. Cross, R. H. B. Galt, J. R. Hanson, P. J. Curtis, J. F. Grove and A. Morrison, J, Chem. SOC.,1963, 2937.5 A.G.Avent, C.Chamberlain, J. R. Hanson and P. B. Hitchcock, J. Chem. Soc., Perkin Trans. I, 1985,2493.6 A.Carcia-Granados、A.Parra-Sanchez和A.Y.Pena Carrillo,《Anales de Quim.》,1980年,第76、85页。7 S. C. Dolan 和 J. MacMillan, J. Chem. SOC.珀金译。我,1985 年,2741 年。8 A. G. Avent, J. R. Hanson, P. B. Hitchcock and B. H. de Oliveira, J. Chem. Soc., Perkin Trans. I, 1990,2661.9 J. R. Hanson, C. L. Willis 和 K. P. Parry, J. Chem. Soc., Perkin Trans. 1, 198 1, 3020.10 S. Sternhell, Pure Appl. Chem., 1964, 14, 15.11 R. H. B. Galt 和 J. R. Hanson, J. Chem. Soc., 1965,1565.12 M. K. Baynham, J. M. Dickinson, J. R. Hanson and P. B. Hitchcock, J. Chem. Soc., Perkin Trans. 1, 1987, 1987.13 E. N. Trachtenberg in Oxidation,R. L. Augustine编,Marcel Decker,纽约,1970年,第1卷,第3章,第119页。14 J. R. Cannon, P. W. Chow, P. R. Jefferies 和 G. V. Meehan, Aust. J. Chem., 1966,19,861.15 M. K. Baynham, J. M. Dickinson 和 J. R. Hanson, Phytochemistry, 1988,27,761 and refs.其中。16 G. M. Sheldrick in Crystallographic Computing 3, eds. G. M. Sheldrick, C. Kruger and R. Goddard, 牛津大学出版社, 1985, pp. 175-1 89.论文 1/03258E 收稿日期:199 年 7 月 1 日 1 录用日期:199 年 7 月 15 日 1

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号