...
首页> 外文期刊>Oncogene >SHIP-mediated inhibition of K562 erythroid differentiation requires an intact catalytic domain and Shc binding site.
【24h】

SHIP-mediated inhibition of K562 erythroid differentiation requires an intact catalytic domain and Shc binding site.

机译:SHIP-mediated inhibition of K562 erythroid differentiation requires an intact catalytic domain and Shc binding site.

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Growing evidence supports a role for the SHIP inositol 5'-phosphatase in the negative regulation of a variety of receptor-mediated signaling pathways in hematopoietic cells. SHIP expression among cultured cell lines was examined and found to be restricted to cells of hematopoietic origin, with the exception of the K562 erythroleukemia cell line, in which SHIP protein and mRNA were undetectable. The absence of endogenous SHIP in K562 cells provided a useful system to study the role of SHIP in growth and differentiation. When stably expressed in K562 cells, SHIP was found to be constitutively tyrosine phosphorylated and associated with endogenous Shc and Grb-2. Stable expression of SHIP did not affect growth of the cells but resulted in decreased synthesis of hemoglobin protein and epsilon-globin mRNA in response to hemin, an inducer of erythroid differentiation. This effect was not due to increased cell death in the SHIP-expressing lines following hemin stimulation, but was likely the result of an impaired differentiation program in these cells. Mutational analysis indicated that SHIP must retain both an intact catalytic domain and Shc binding site to efficiently inhibit K562 erythroid differentiation.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号