首页> 外文期刊>polar biology >Purification and partial characterization of a novel hyaluronic acid-degrading enzyme from Antarctic krill (Euphausia superba)
【24h】

Purification and partial characterization of a novel hyaluronic acid-degrading enzyme from Antarctic krill (Euphausia superba)

机译:Purification and partial characterization of a novel hyaluronic acid-degrading enzyme from Antarctic krill (Euphausia superba)

获取原文
           

摘要

A novel enzyme degrading hyaluronic acid has been isolated, purified and characterized from Antarctic krill (Euphausia superba). A combination of affinity chromatography (Con A-Sepharose), gel filtration (Superose 6) and fast protein liquid chromatography (Mono Q) was used for the purification. The hyaluronidase activity was determined by a radial diffusion method based on hyaluronic acid incorporated into an agarose gel. Moreover, the beta-glucuronidase and endo-(1,3)-beta-D-glucanase activities were also followed through the process using phenolphtalein mono beta-glucuronic acid and laminarin as substrates. After the final purification step on Mono Q column, the chromatogram showed three main peaks designated A, B and C. Peak C contained high hyaluronidase activity undetectable in peak A and B. The betaglucuronidase activity was associated with peak A, while the endo-(1,3)-beta-D-glucanase activity was found in peak B and slight in peak C. The hyaluronidase was purified about 85-fold. It had a pH optimum of 5.3, a temperature optimum of 37°C and a molecular weight of 80 000 Daltons. On polyacrylamide gradient gel electrophoresis the enzyme fraction showed one major band associated with hyaluronic acid decomposition, slightly contaminated with a few other components. Isoelectric focusing in combination with a hyaluronic acid zymogram demonstrated one major band at pH 6.7 with high enzyme activity. Preliminary data on enzyme specificity suggest that krill hyaluronidase is a new endo-beta-glucuronidase and support the concept of krill enzymes as a remarkable and unusually effective digestive system adapted to the Antarctic marine ecosystem

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号