首页> 外文期刊>Planta: An International Journal of Plant Biology >Growth behavior of single epidermal cells during flower formation: Sequential scanning electron micrographs provide kinematic patterns forAnagallis
【24h】

Growth behavior of single epidermal cells during flower formation: Sequential scanning electron micrographs provide kinematic patterns forAnagallis

机译:Growth behavior of single epidermal cells during flower formation: Sequential scanning electron micrographs provide kinematic patterns forAnagallis

获取原文
           

摘要

A non-destructive method for scanning electron microscopy allows individual developing flower surfaces to be imaged sequentially. Kinematic analysis, the quantitative characterization of expansion behavior, can be applied to consecutive images of the same primordium. The individual cell, delimited as a polygon by its anticlinal walls, is the unit of analysis. Growth in two dimensions is characterized by a right-angle cross giving the maximal and minimal rates of extension relative to a known side of the cell. Methods have been developed here to make the analysis rapid and the results easy to portray. Data were obtained for the flower primordium ofAnagallis arvensisL. from its origin as a smooth dome through the development of five small stamens and an incipient gynoecium. The outermost sepal whorl arises synchronously as a fivefold undulation. This maneuver is closely coupled to the formation of five stamen buttresses alternating with the small sepals (petals form later). The most characteristic kinematics occur as the stamen buttresses expand rapidly at their tips. The sides of the buttresses, and the regions between them, show highly directed extension following the five radii of the flower. These unique expansions are associated with the origin of the filament as a stalked structure and also correlate with the future bilateral symmetry of the anther. The region interior to the stamens grows slowly as circumferentially oriented anticlinal divisions initiate a radial cell-file pattern for the gynoecium. The developmental sequence has many features of “feed-forward” where the previous structure is important for the generation of structure to come (e.g. stamens alternate precisely with sepals). Some of these features fit plausible biomechanical explanations for morphogene

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号