...
首页> 外文期刊>Journal of environmental & engineering geophysics >Power Density Distribution in Subsurface Fractures Due to an Energized Steel Well-casing Source
【24h】

Power Density Distribution in Subsurface Fractures Due to an Energized Steel Well-casing Source

机译:通电钢套管源在地下裂缝中的功率密度分布

获取原文
获取原文并翻译 | 示例

摘要

Robust in situ power harvesting underlies the realization of embedded wireless sensors for monitoring the physicochemical state of subsurface engineered structures and environments. The use of electromagnetic (EM) contrast agents in hydraulically fractured reservoirs, in coordination with completion design of wells, offers a way to transmit energy to remotely charge distributed sensors and interrogate fracture width, extent, and fracture-stage cross-communication. The quantification of available power in fracture networks due to energized steel-cased wells is crucial for such sensor designs; however, this has not been clarified via numerical modeling in the limit of Direct Current (DC). This paper presents a numerical modeling study to determine the EM characteristics of a subsurface system that is based on a highly instrumented field observatory. We use those realistic field scenarios incorporating geometry and material properties of contrast agents, the wellbore, and the surrounding geologic environment to estimate volumetric power density near the wellbore and within hydraulic fractures. The numerical modeling results indicate that the highest power densities are mainly focused around the wellbore excited by a point current source and the fracture boundary. Using DC excitation, the highest power density in the fracture is at the fracture tip. The relatively high-power density on the order of tens of mW/m3 at the vicinity of the wellbore and at fracture tips suggests that remote charging of sensor devices may be readily possible. Simulation results also show that the region of the highest power density can be significantly increased when the EM source is located inside a conductive fracture, which may lead to a promising deployment strategy for embedded micro-sensors in geologic formations.
机译:强大的原位功率收集是实现嵌入式无线传感器的基础,用于监测地下工程结构和环境的物理化学状态。在水力压裂油藏中使用电磁(EM)造影剂,与井的完井设计相协调,提供了一种将能量传输到远程充电分布式传感器并询问裂缝宽度、范围和裂缝阶段交叉通信的方法。由于通电钢套井,对裂缝网络中的可用功率进行量化对于此类传感器设计至关重要;然而,这尚未通过直流电 (DC) 极限的数值模拟来阐明。本文提出了一项数值建模研究,以确定基于高度仪器化的野外观测站的地下系统的电磁特性。我们使用这些真实的现场场景,结合造影剂、井筒和周围地质环境的几何形状和材料特性来估计井筒附近和水力裂缝内的体积功率密度。数值模拟结果表明,最高功率密度主要集中在点电流源激发的井筒和裂缝边界周围。使用直流励磁时,断裂中功率密度最高的是断裂尖端。在井筒附近和裂缝尖端,相对较高的功率密度约为数十mW/m3,这表明传感器设备的远程充电可能很容易实现。仿真结果还表明,当电磁源位于导电裂缝内时,最高功率密度的区域可以显著增加,这可能导致在地质构造中嵌入微传感器的部署策略很有前途。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号