...
首页> 外文期刊>Journal of environmental & engineering geophysics >Mapping depth to argillic soil horizons using apparent electrical conductivity
【24h】

Mapping depth to argillic soil horizons using apparent electrical conductivity

机译:利用表观电导率绘制泥质土壤层的深度

获取原文
获取原文并翻译 | 示例

摘要

Maps of apparent electrical conductivity (EC_a) of the soil profile are widely used in precision agriculture. A number of EC_a sensors are commercially available, each with a unique response function (i.e., the relative contribution of soil at each depth to the integrated ECa reading). Our past research estimated depth to an argillic horizon (i.e., topsoil depth, TD) on claypan soils by fitting empirical equations to ECa sensor data. The objective of this research was to determine if TD estimates could be improved by combining data from multiple ECa sensors and by solving for TD by inverting a two-layer soil model incorporating instrument response functions. Data were obtained with three sensors having five different ECa depthresponse functions (Veris 3150*, Geonics EM38 vertical dipole mode, and DUALEM-2S) on two Missouri claypan-soil fields. Soil cores obtained in each field provided measured TD data for calibration and validation. Using a numerical optimization approach, response-function models were developed for EC_a variables individually and in combination. Similarly, linear regression was applied to single and multiple variables. Root mean square error of validation (RMSE _V) of single-variable TD estimates was 22 to 25 cm, with better results for those variables with moderately deep ECa response functions. Results from the model-based approach were very similar to those obtained by regressing TD on EC_a~(-1). The best calibrations using multiple variables in model inversion or regression were somewhat better than those using single variables, with RMSEV of 22 cm and 20 cm, respectively. For all approaches, highest TD errors were localized to one area of one field, possibly because soils in this area violated the model assumption of spatially homogeneous soil layer conductivity. Although these calibrations are sufficiently accurate to be useful in TD mapping, a model solution allowing layer conductivities to vary spatially should be investigated for possible improvements.
机译:土壤剖面的表观电导率(EC_a)图广泛用于精准农业。市面上有许多EC_a传感器,每个传感器都具有独特的响应函数(即每个深度的土壤对集成ECa读数的相对贡献)。我们过去的研究通过将经验方程拟合到 ECa 传感器数据来估计粘土层的深度(即表土深度,TD)。本研究的目的是确定是否可以通过结合来自多个 ECa 传感器的数据来改进 TD 估计值,并通过反演包含仪器响应函数的两层土壤模型来求解 TD。在密苏里州的两个粘土土壤田上,使用具有五种不同 ECa 深度响应函数(Veris 3150*、Geonics EM38 垂直偶极子模式和 DUALEM-2S)的三个传感器获得数据。在每个田地获得的土壤岩心为校准和验证提供了测量的TD数据。使用数值优化方法,为EC_a变量单独和组合开发了响应函数模型。同样,线性回归应用于单个变量和多个变量。单变量TD估计值的均方根误差(RMSE _V)为22-25 cm,具有中等深度ECa响应函数的变量结果更好。基于模型的方法的结果与在EC_a~(-1)上回归TD得到的结果非常相似。在模型反演或回归中使用多个变量的最佳校准比使用单个变量的校准要好一些,RMSEV分别为22 cm和20 cm。对于所有方法,最高的TD误差都局限于一个田地的一个区域,这可能是因为该区域的土壤违反了空间均匀土壤层电导率的模型假设。尽管这些校准足够精确,可用于TD映射,但应研究允许层电导率在空间上变化的模型解决方案,以寻求可能的改进。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号