首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Reaction of 4-chlorocoumarin with organometallic reagents. Synthesis of trialkylbenzopyrans, 4-chlorobenzopyrans, 4-alkylcoumarins ando-hydroxyphenylprop-2-ynyl alcohols
【24h】

Reaction of 4-chlorocoumarin with organometallic reagents. Synthesis of trialkylbenzopyrans, 4-chlorobenzopyrans, 4-alkylcoumarins ando-hydroxyphenylprop-2-ynyl alcohols

机译:4-氯香豆素与有机金属试剂的反应。三烷基苯并吡喃、4-氯苯并吡喃、4-烷基香豆素和羟基苯基-2-丙烯醇的合成

获取原文
获取外文期刊封面目录资料

摘要

J. CHEM. SOC. PERKIN TRANS. 1 1992 Reaction of 4-Chlorocoumarin with Organometallic Reagents. Synthesis of Trial kyl benzopyra ns, 4-C hlorobenzopyrans, 4-AI kylcou ma ri ns and 0-Hydroxyphenyl prop-2-ynyl Alcohols Angel Alberola, Blanca Calvo, Alfonso Gonzalez Ortega * and Rafael Pedrosa Departamento de Quimica Organica, Universidad de Valladolid, 47005 Valladolid, Spain 4-Chlorocoumarin has been shown to be a highly versatile starting material when treated with organometallic reagents. Thus, it has allowed the selective synthesis either directly, or through simple additional transformations, of 4-alkylcoumarins (with R,CuLi in Et,O, or Pr'Mg Br in THF), 2-chloro-2-(0- hydroxyphenyl)allyl alcohols or their 4-chloro-2H-1 -benzopyran derivatives (with RMgX in THF), 2-(o-hydroxyphenyl)prop-2-ynyt alcohols (when non-acid hydrolysis were used in the latter reactions) and 2,2,4-trialky1-2H-l -benzopyrans (when excess of RMgX or R,AI reagents were used).As a part of a more general project directed to the synthesis of formation of compound 2 into compound 3 was observed halogeno-2H- 1-benzopyrans, we have studied the behaviour of (except for MeMgI) when longer reaction times were used. the 4-chlorocoumarin 1 towards organometallic reagents. The However, in toluene, diethyl ether or THF at 25 "C,for one hour presence of the halogen at C-4 modifies the reactivity of the or more and molar ratio 8/1, the major product was compound heterocycle, making it more sensitive to variations in experi- 3,which was obtained in moderate to very good yield (51-83).mental conditions than are the 3-halogenocoumarins. The Complex mixtures of products were obtained when different reaction of 4-chlorocoumarin with organometallic derivatives experimental conditions were employed (Table 1). Nevertheless, (RMgX, R,A1, RLi, R,CuLi) can lead to a complex mixture of the isolation and purification of compound 2 was possible only compounds (Scheme l), depending on the nature of the organo- by recrystallization from the crude reaction mixture where they metallic reagent, the reaction and the hydrolysis conditions. were formed in high yield. Attempts at purification by other methods (including flash chromatography) transformed com- Reactions with Magnesium Derivatives.-Primary alkylmag-pound 2 into dehydrochlorination 5, or cyclization 8 products.nesium halides (R = methyl, ethyl, propyl or butyl) allowed This behaviour was also observed for compounds 3,which auto- selective preparation of compound 2 or 3. Thus, when the transformed readily into 2,2,4-trialky1-2H-l-benzopyrans9. It is reactions were carried out in THF (tetrahydrofuran), at 0 "Cfor noteworthy that the hydrolytic conditions are crucial to obtain a maximum of 1 h, and molar ratio RMgX/l, 5/1, a good yield 2 and 3 in good yields; thus using cold saturated aqueous (7249) of compound 2 was obtained, whereas the trans- NH,Cl (or a very dilute acidic solution and ice) followed by H + WH00 Cl CI A R 1 2 3 4 RR + q H + HWH0 OH 5 6 7 + CI A A 8 9 10 qR CI 0 11 12 Scbeme 1 a R = H, b R = Me,c R = Et, d R = Pr, e R = Bu, f R =Pri, g R = Bu'.Reagents: i, RM;ii, H,O.Table 1 Reaction of compound 1 with Grignard derivatives RMgX Solvent T/"C tlh l/RM MeMgI PhMe 0 2 Et,O 0 2 THF 0 2 EtMgI PhMe 25 2 Et20 25 2 THF 0 2 EtMgBr PhMe 25 1 Et20 25 1 THF 25 1 THF 0 1 THFb 0 1 PrMgBr PhMe 25 1 PhMe 0 1 Et20 25 1 Et,O 0 1 THF 25 0.5 THF 0 1 THF 0 1 BuMgBr PhMe 25 1 PhMe 0 1 Et20 25 1 THF 25 1 THF 0 I Pr'MgBr PhMe 25 1 PhMe 0 1 Et20 25 0.5 EtZO -50' 20 Et20 0 1 THF 25 0.5 THF -50' 20 THF 0 1 THF 0 1 THFd 25 1 Et20 -50 0.5 THF -50 0.5 Yields in all tables were calculated from NMR spectra of the reaction mixture.to room temp. Test negative (THF-benzophenoneNa, colourless solution). J. CHEM. SOC. PERKIN TRANS. 1 1992 ~ ~~ ~ Product ( Yield) 2 3 10 5b 3f(30) Sf(28)3f(79) 3f(50) 3f(75) 31(40) Sf(65) 1Of (79) 1Of (80) 1Of (69) Aqueous hydrolysis. 30 min at -50 "C,and then allowed to warm immediate work-up and removal of the solvent under reduced pressure at room temp. allowed the syntheses of the mentioned products. The behaviour of isopropylmagnesium bromide towards 1 was different from that shown by primary magnesium deriv- atives. The most important difference is the possibility to obtain 4-alkylcoumarin 1Of (1,4-addition-elimination)in very good yield (69-80), in diethyl ether or THF at -50 "C. In this case the bis-addition was the predominant process at temperatures higher than 0 "C,and the best yield (85) for 2f was obtained in toluene, instead of THF.The reason for this behaviour is that the competing 1P-addition process does not take place in this solvent,'-5 and the lower reactivity of the isopropylmagnesium bromide allows a better control of the reaction leading to compound 13 (Scheme 2). Unfortunately, other secondary alkylmagnesium derivatives, such as sec-butyl- or cyclopentyl-magnesium bromides yielded 4-alkyl coumarins in very low yields. Monitoring of the reactions showed that trialkyl derivatives 3 may be obtained either through 10 (for Pr'MgBr), or through the alkoxides 13 (for RMgBr; R = Et, Pr, Bu) (Scheme 2). The latter possibility opened a versatile path to trisubstituted benzo- pyrans with different alkyl groups attached to C-2 and C-4. Thus, these substrates can be obtained from compound 1 simply by appropriately changing the organometallic reagent used in each step (Scheme 3) (Table 2).1 1CI 13 1. il c10 3 Scheme 2 Reagents: i, RM; ii, H,O On the other hand, although 3-(o-hydroxyphenyl)prop-2-ynyl alcohols 5 could be formed by dehydrohalogenation during the reaction,6 their ratios in the final mixtures are highly dependent on the conditions of hydrolysis. Thus, derivatives 5 were obtained as major compounds (58-79) (after column chromatography) when the reactions were hydrolysed only by water, whereas quenching the reaction mixture with acetic acid J.CHEM. SOC. PERKIN TRANS. I 1992 3 R=W 9 R=R' 14 R = Et, R'= BU 15 R=Et,R'=Bu 16 R=Bu,R'=Et 17 R=Bu,W=Et Scheme 3 Reagents: i, RMgX; ii, H20, iii, R'MgX Table 2 Reaction of compounds 2 with RM 2 RM Solvent " t/h Product ( yield) 2b Me,AI CH2C12 20 2c zc EtMgBr Et,AI Et20 PhMe 12 20 2c 2e 2e 2e 2e BuMgBrBuMgBr BuMgBr EtMgBr Bu,Al Et,O Et,O PhMe Et20 PhMe 12 12 12 12 20 ~~~~ " The reactions were carried out at 25 "C; molar ratio 2/RM: 1/4. Table 3 Reaction of compound 1 with R,AI RM Solvent " T/T" 1/RM Products ( yield) Me,Al PhMe 25 3b (-1CH,Cl, 25 9b (49) CH,C12 25 9b (65) Et,AI PhMe 0 PhMe 25 CH,Cl, 25 CH,Cl, -50b Et,O 25 THF 25 Bu,AI PhMe -50b PhMe 0 PhMe 25 Bu',AI PhMe -50b PhMe 0 PhMe 25 Bu',Al-H PhMe -50 1 /6 2a (78) PhMe -50 112.5 lla (SO) PhMe 25 113 2a (75) Et,O -50 1/2.5 lla (40), 1 (45) " The reactions were carried out for 20 h.30 min at -50 "C, and then allowed to warm to room temp. led to mixtures of compounds 2,s and, in some cases, 7. These results suggest that the dehydrohalogenation process mainly occurs during, or after, hydrolysis in non-acidic conditions. Reactions with Organoaluminium Derivatives.-The control of the reactions of aluminium derivatives with 1is more difficult than the above reported with Grignard reagents. Thus, from a practical point of view, it is more convenient to have the reaction at 25 "C,to obtain products 3or 4. In this case triethyl- and tributyl-aluminium, in toluene, led to compound 3 in very good yields (68-85); but triisobutylaluminium, more sterically demanding and with a high reductive character, yielded a mixture of the alkylation-reduction compound 4 as major (52- 65), and the double reduction product 2a as minor component 3077 Table 4 Reaction of compound 1 with lithium derivatives RLi Solvent T/"C l/RLi t/h Products ( yield) ~ BuLi PhMe 25 1/4 Et,O -50 1/4 Et20 25 1/4 THF 25 1/4 MeLi Et,O -50 1/6 2 Et20 -50 1/4 2 Et,O -50" 1/6 12 THF -50 1/6 2 THF -50 1/4 2 " 30 min at -50 "C, and then allowed to warm to room temp.Table 5 Reaction of compounds 1 and 10 with organocuprates Coumarin R,CuLi Solvent" T"/T Products ( yield) 1 Me,CuLi Et,O -50 lob (90) Me2CuLi THF -20 lob (65) Me,CuLi Et,O -50 lob (85) Me,CuLi THF -20 lob (69) Bu2CuLi Et,O -50 1Oe (48), 2e (15) Bu,CuLi Et,O -50 1Oe (65) Bu,CuLi THF -50 1Oe (70) BuCu Et,O -50 1Oe(->10b Me,CuLi Et20 -50 lob (95) 10b Bu,CuLi Et20 -50 10b (90) 1Oe Me,CuLi Et20 -50 1Oe (95) 1Oe Me,CuLi Et20 -50 1Oe (87) " The reactions were carried out in molar ratio l/R,CuLi, 1/3 for 2 h.Boron trifluoride-diethyl ether complex was used. (10-34) (Table 3). The reductive character of these organo- metallic reagents increases in diethyl ether or THF, but their reactivity towards coumarins decreases,' making the reactions impossible from a synthetic point of view. Since trimethylaluminium is less reactive than triethyl- or tributyl-aluminium, the reaction had to be carried out in refluxing toluene.However, after 3 h, only a complex mixture of products was obtained. The trimethylbenzopyran 9b, which could not be obtained using MeMgI, could however be syn- thesized in moderate yield (65) when the reaction was carried out in CH2C12. The reaction of compound 1 with DIBAH, at room temp. yielded compound 2a. Nevertheless, at lower temperatures (-50 "C, 2 h, l/DIBAH, 1/2.5), the product obtained was lla, which is very unstable and was isolated after purification as chromone 12a. Reactions with Lithium Derivatives.-Lithium derivatives re- act by 1,2-addition, but in our case they did not lead preferen- tially to the expected dialkyl derivatives 2 (Table 4). Instead, the dehydrochlorination product 5e was obtained as major com- pound (25-60) in the reactions of 1with butyllithium.On the other hand, methyllithium reacted with 1 to give o-hydroxyphenylacetylene 6 as major compound. This degrad- ation product did not appear either in the reactions with other organometallics, or with butyllithium. Although compound 6 could be formed during the reaction, the main amount must be formed during the hydrolysis, since it diminished or disappeared when the reaction mixture was subjected to acetolysis. Reactions with 0rganocuprates.-Lithium dimethyl- and di- butyl-cuprates and their boron trifluoride-diethyl ether com- plexes reacted with 4-chlorocoumarin 1, giving very good yields of 4-methylcoumarin 10b (90) and 4-butylcoumarin 1Oe (65), respectively.Compounds 10 are stable in excess of the reagent, and they are probably formed by c~pulation,~ instead of 1,4-addition-eliminationprocess. Conversely, alkylcuprates which react better than lithium dialkylcuprates with a-P-unsaturated esters by a 1,4-addition process,' reacted with compound 1 leading to compound 10 in low yield (Table 5). Conclusion.+-Chlorocoumarin has been shown to be a very useful substrate in its reactions with organometallic reagents; both by its versatility in the introduction of different sub- stituents, and by the nature of the reaction products. Provided that strict control of the reaction conditions is achieved, these otherwise cumbersome and uninteresting reactions become useful synthetic procedures.Experimental M.p.s were measured on a Leit Laborlux D microscope with a heating device and are uncorrected. The b.p.s correspond to the oven temperature in a kugelrohr Buchi GKR-51. NMR spectra were recorded on Bruker AC80 spectrometer and chemical shifts are given downfield from SiMe, as internal standard, J values are given in Hz. Mass spectra were measured on Hewlett- Packard 5988A mass spectrometer. The starting material 4-chlorocoumarin was prepared as pre- viously described. Reactionof Compound1 with Organocuprates. Synthesis of 4-Methyl-1-benzopyran-2-one10b and 4-Butyl-1-benzopyran-2-one 10e.-A magnetically stirred solution of organocuprate or boron trifluoride-diethyl ether complex (1.6mmol) in the appropriate solvent (Table 5) (20cm3) under N, was cooled to -50 "C, and a solution of compound 1 (0.2g, 1.1 mmol) in dry solvent (20cm3) was added dropwise.The mixture was stirred for 60min, and quenched with saturated aq. NH,Cl (15cm3). The product was extracted with Et,O (3 x 20 cm3), and the extract was washed sequentially with water and brine. The organic layer was chromatographed on silica gel with methyl- ene chlorine as eluent, to yield the compounds 10b (0.14 g, 80) and 1Oe (0.15g, 64).4-Methyl-1-benzopyran-2-one 10b m.p. 81-82 "C (lit.," 82"C) (Found: C, 74.8;H, 4.85. Calc. for CloH,O,: C, 75.0;H, 5.0); 6,(80 MHz; CDCl,) 2.51 (3H, d, J l), 6.18 (1 H, q, J 1) and 6.85-7.61 (4 H, m). 4-Butyl- 1-benzopyran-2-one 10e m.p. 68.5-69.5"C (lit.,' 67-68"C) (Found: C, 77.35;H, 6.8.Calc.for C13HldO2: C, 77.2;H, 7.0);6,(80 MHz; CDCl,) 0.99 (3 H, td, J 6, l), 1.09-1.98 (4 H, m), 2.77 (2 H, m),6.26 (1 H, t, J 1) and 7.12-7.61(4 H, m); m/z 202 (M', 20) and 160 (100). Reactionof Compound1 with Organomagnesium, Organolith- ium and Organoaluminium Compounds. General Procedure.- To a magnetically stirred solution of 4-chlorocoumarin 1 (5.5 mmol) in the appropriate solvent (100cm3) was added dropwise (30min) the organometallic compound under nitrogen (see Tables 1, 3 and 4). At the end of the reaction (monitored by TLC), the mixture was hydrolysed. The organic layer was decanted, dried (MgS04) and the solvent was eliminated under reduced pressure at room temp. The conditions of hydrolysis and the methods of purification depend on the desired product, and are given below.(a) 1,l-Dialkyl-3-chloro-3-(o-hydroxyphenyl)prop-2-en-1-01s 2. The reaction was hydrolysed with saturated aqueous NH,Cl, and the product was isolated and purified by recrystallization from C14C or CHCl, from the reaction mixture. (6)1,1,3-Trialkyl-3-(o-hydroxyphenyl)prop-2-en-1-01s 3. The reaction mixture was quenched with ice-water, and acidified until metallic hydroxides were just dissolved, followed by J. CHEM. SOC. PERKIN TRANS. 1 1992 neutralization with NaHCO,. The compounds were purified by recrystallization from toluene-hexane, 1/20or by flash chrom- atography on silica gel with CH2C12 as eluent. It was not possible to purify compound 3e by recrystallization, and it was transformed into 2,2,4-trialkyl-2H-1-benzopyran 9e, when subjected to distillation.(c) 1,l-Dialkyl-3-(o-hydroxyphenyl)prop-2-yn-1-01s 5. The re- action mixture was hydrolysed with water at room temp. The title compounds were purified by column chromatography on silica gel, with CH2C12-Et,O: 20/1as eluent. (d)2,2-Dialkyl-4-chloro-2H-1-benzopyrans8. The concen-trate of the reaction was heated under reflux with silica gel ( x 3 w/w) l1 for 1 h. The title compounds 8 were purified by column chromatography on silica gel, with hexane as eluent. (e)2,2,4-Trialkyl-2H-l-benzopyrans9.After concentration of the reaction mixture of 1,1,3-trialkyl-3-(o-hydroxyphenyl)prop-2-en-1-01s3, the concentrate was treated as described in (d).The physical and spectral characteristics of the products, the optimized experimental conditions, and chemical yields are given below. (E)-3-Chloro-3-(o-hydroxyphenyl)prop-2-en-1-01 2a. (DIBAH, PhMe, -50 "C, 72) m.p. 74.5-75.5"C (Found: C, 58.3;H, 4.75.C,H,ClO, requires C, 58.6;H, 4.9);6,(80 MHz; CDCl,) 3.95 (2 H, d, J 7), 6.22 (1 H, t, J 7) and 6.72-7.28(4 H, m); m/z168(M+ + 2 -H20, 17), 166 (M+ -H20,55) and 165 (100). (E)-4-Chloro-4-(o-hydroxyphenyl)-2-methylbut-3-en-2-ol2b. (MeMgI, THF, 0 "C, 75) m.p. 106-107 "C (Found: C, 62.2;H, 6.4. C,,H,,ClO, requires C, 62.1;H, 6.2); 6,(80 MHz; CDCl,) 1.26 (6 H, s), 6.29 (1 H, s) and 6.78-7.33(4 H, m); m/z 196(M+ + 2 -H,O, 479,194(M+ -H,O, 11)and 179 (100).(E)-1-Chloro-3-ethyl-1-en-3-012c.1-(o-hydroxypheny1)pent-(EtMgBr, THF, 0 "C, 69); m.p. 94-95 "C (Found: C, 64.8; H, 7.3.C13H1,C102 requires C, 64.9;H, 7.1); 6,(80 MHz; CDCl,) 0.87 (6 H, t, J7),1.52 (4H, m), 6.20 (1 H, s) and 6.78-7.25(4 H, m); m/z242 (M+ + 2, l), 268 (M', 1)and 71 (100). (Z)-3-Ethyl-5-(o-hydroxyphenyl)hept-4-en-3-013c. (EtMgBr, PhMe, 25 "C, 77) m.p. 77.8-78.8"C (Found: C, 76.7;H, 9.65. C15H22O2 requires C, 76.9;H, 9.5);aH(8OMHz; CDCl,) 0.97 (9H, m), 1.48 (4 H, q, J7),2.25 (2H, qd, J7, l), 5.58 (1H, t, J 1) and 6.79-7.21(4 H, m); m/z 216 (M+ -H20,3) and 187 (100).0-Hydroxyphenyl)-4-propylnon-(2)-6-( 5-en-4-01 3d. (PrMgBr, Et,O, 25 "C, 73) b.p. 140-145 "C (2mmHg) (the title compound decomposed to 2,2,4-tripropyl-2H-1-benzopyran 9d); 6,(80 MHz; CDCl,) 0.97 (9 H, m), 1.05-1.72 (10 H, m), 2.20 (2H,td,J7,1),5.58(1H,t,Jl)and6.83-7.18(4H,m);m/z216 (M+ -H20,2) and 215 (100). (Z)-5-Butyl-7-(0-hydroxyphenyl)undec-6-en-5-01 3e. (Bu, Al, PhMe, 25 "C, 79) yellow oil (the compound decomposed to J. CHEM. SOC. PERKIN TRANS. 1 1992 2,2,4-tributyl-2H-l-benzopyrun9e); 6,(80 MHz; CDC1,) 0.80-1.26 (9 H, m), 1.28-1.62 (16 H, m), 2.15-2.42 (2 H, m), 5.59 (1 H, m) and 6.7G7.14 (4 H, m); m/z 300 (M+ -H20, 6) and 243 (100).(Z)-~-(O-ffydro.uyphenyl)-3-isopropyl-2,7-dimethylhept-4-en-3-013f. (Pr'MgBr, Et20, 25 "C, 75) m.p.93.6-94.6 "C (Found: C, 78.1; H, 10.4. C18H2802 requires C, 78.2; H, 10.2); 6,(80 MHz; CDCI,) 0.66-0.99 (12 H, m), 0.94 (16 H, d, J7), 1.83 (2 H, m), 2.39 (1 H, sept d, J 7, l), 5.42 (1 H, d, J 1) and 6.50-7.21 (4 H, m); m/: 258 (M+ -H20, 2) and 71 (100). (Z)-6-(o-HydroxyphenyZ)-2,8-dimethyfnon-5-en-4-o14g.(Bu',-Al, PhMe, 25 "C, 61) m.p. 93.6-94.6 "C (lit.," 93-94 "C) (Found: C, 80.8; H, 10.2. Calc. for C1,HZ6O2: C, 80.9; H, 10.3); 6,(80 MHz; CDCl,) 0.62-1.12 (12 H, m), 1.21-2.05 (4 H, m), 2.23 (2 H, m), 4.15 (1 H, dt, J9,7), 5.49 (1 H, d, J9) and 6.59-7.1 1 (4 H, m); mi= 244 (M+ -H20, 9) and 187 (100).4-(o-Hydroxypheny1)-2-methylbut-3-yn-2-o15b. (MeMgI, PhMe, 0 "C, 64) m.p. 131-132 "C (Found: C, 75.1; H, 6.7. C, ,H1 202requires C, 75.0; H, 6.9); aH(80MHz; CDCl,) 1.65 (6H,s),6.70-6.93(2H,m)and 7.12-7.32(2H,m);m/z 176(M+, 14) and 158 (100). 3-Ethy/-1-(o-hydroxypheny1)pent- 1 -yn-3-ol 5c. (EtMgBr, THF, 0 T, 67) m.p. 72.3-73.3 "C (Found: C, 76.25; H, 7.85. Ct ,H 602requires C, 76.4; H, 7.9); 6,(80 MHz; CDCl,) 1.08 (6 H, t, J 7), 1.78 (4 H, q, J 7) and 6.69-7.30 (4 H, m); m/z 204 (M+, 7) and 186 (100). 1-(o-Hydro.~~~phenl)-3-propylhex-1 -yn-3-01 5d. (PrMgBr, THF, O"C, 60) m.p. 6647°C (Found: C, 77.7; H, 8.5. C15H2,Oz requires C, 77.55; H, 8.7); 6,(80 MHz; CDCl,) 0.96 (6 H, t, J 7), 1.45-1.83 (8 H, m) and 6.71-7.33 (4 H, m); m/z 232 (M+, 4) and 43 (100).3-Butyl-l-(o-hydroxyphenyl)hept-l-yn-3-ol9.(BuMgBr, PhMe, 0 "C, 59) m.p. 63.5-64.5 "C (Found: C, 78.6; H, 9.15. C1 7H2402 requires C, 78.4; H, 9.3); 6,(80 MHz; CDC13) 0.90- 1.08 (6 H, m), 1.15-1.70 (12 H, m) and 6.71-7.32 (4 H, m); m/z 260 (M +,1) and 203 (100). l-(o-Hydroxyphenyl)-3-isopropyl-4-methyl-pent-l-yn-3-01 5f. (Pr'MgBr, THF, 0 "C, 60) m.p. 100.5-101.5 "C (Found: C, 77.65; H, 8.6. C15H2,02 requires C, 77.55; H, 8.7); 6,(80 MHz; CDCl,) 1.08 (6 H, d, J7), 1.10 (6 H, d, J7), 2.05 (2 H, sept, J7) and 6.70-7.32 (4 H, m); m/z 232 (M +,1) and 198 (100). o-Hydroxyphenylacetylene6. (MeLi, Et,O, -50 "C, 60) b.p. 79-82 "C (20 mmHg) lit.,', 74.5 (15 mmHg); dH(80MHz; CDCI,) 3.45 (1 H, s),6.65-7.65 (4 H, m); m/z 119 (M+ + 1,8) and 118 (Mf, 100).1 -one 7b.3-Hydroxy- 1 -(o-hydroxyphenyl)-3-methyfbutun-(MeMgI, THF, 0 "C, 60) Hydrolysed with AcOH, purified by chromatography with PhMe as eluent; b.p. 105-110 "C (1.5 mmHg) (Found: C, 68.15; H, 7.4, C 1H 1403 requires C, 68.0; H, 7.3); 6,(80 MHz; CDCl,) 1.36 (6 H, s), 3.16 (2 H, S) and 6.78- 7.79 (4 H, m); m/z 194 (M', 5) and 121 (100). 4-Chloro-2,2-dimethyl-2H-1 -benzopyran 8b. (MeMgI, THF, 0 "C, 70) b.p. 98-100 "C (1.5 mmHg) (Found: C, 67.6; H, 5.6. C H 'ClO requires C, 67.9; H, 5.7); 6,(80 MHz; CDCl,) 1.44 (6 H, s), 5.71 (1 H, s) and 6.70-7.51 (4 H, m); m/z 196 (M' + 2, 373,194 (M', 10) and 170 (100). 4-Chloro-2,2-diethyl-2H-1 -benzopyrun 8c (EtMgBr, THF, 0 "C, 65) b.p.100-105 "C (1.5 mmHg) (Found: C, 70.0; H, 6.6. Cl3HI5C10 requires C, 70.1; H, 6.8); 6,(80 MHz; CDCl,) 0.93 (6 H, t, J7), 1.56-1.86 (4 H, m), 5.62 (1 H, s) and 6.70-7.46 (4 H, m); m/z 224 (M+ + 2, l), 222 (M', 3) and 193 (100). 4-Chloro-2,2-dipropyl-2H-1 -benzopyran 8d. (PrMgBr, THF, 0 "C, 61) b.p. 105-110 "C (0.9 mmHg) (Found: C, 72.0; H, 7.5. C15H19CI0 requires C, 71.8; H, 7.6); 6,(80 MHz; CDCl,) 0.80-1.31 (6 H, m), 1.37-1.79 (8 H, m), 5.64 (1 H, s) and 6.68-7.46 (4 H, m); m/z 196 (M' + 2, 5), 194 (M', 15) and 207 (100). 4-Chloro-2,2-dibutyl-2H-1 -benzopyran 8e. (BuMgBr, THF, 0 "C, 70) b.p. 135-139 "C (2 mmHg) (Found: C, 73.4; H, 8.5. C17H2,C10 requires C, 73.2; H, 8.3); 6,(80 MHz; CDCI,) 0.73-1.05 (6 H, m), 1.05-1.94 (12 H, m), 5.63 (1 H, s) and 6.67- 7.45 (4 H, m);m/z 196 (M+ + 2,1), 194 (M+, 3) and 221 (100).2,2,4- Trimerhyl-2H- l-benzopyrun 9b. (Me,Al, Cl,CH2, 25 "C, 62) b.p. 60-65 "C (1 mmHg) lit.,14 63-65 "C (1 mmHg) (Found: C, 82.55; H, 8.2. Calc. for C12H14O: C, 82.7; H, 8.0); (SO MHz; CDC13) 1.39 (6 H, s), 1.98 (3 H, d, J l), 5.39 (1 H, q, J 1) and 6.74-7.20 (4 H, m); m/z 174 (M', 49) and 159 (100). 2,2,4-Tripropyl-2H- 1-Den:mpyran 9d. (PrMgBr, Et,O, 25 "C, 70) b.p. 120-125 "C (1.3 mmHg) (Found: C, 83.6; H, 9.9. CI8H2,O requires C, 83.7; H, 10.1); 6,(80 MHz; CDCl,) 0.80-1.05 (9 H, m), 1.26-1.71 (10 H, m), 2.36 (2 H, t, J 7), 5.26 (1 H, t, J 1) and 6.70-7.17 (4 H, m); m/z 258 (M+, 2) and 215 (100). 2,2,4- Tributyl-2H-1 -benzopyrun 9e.(Bu,Al, PhMe, 25 "C, 75) b.p. 145-150 "C (1.5 mmHg) (Found: C, 83.8; H, 10.6. C21H32O requires C, 83.95; H, 10.7); aH(80MHz; CDCl,) 0.95 (9 H, m), 1.15-1.71 (16 H, m), 2.45 (2 H, t, J7), 5.27 (1 H, s) and 6.63-7.19 (4 H, m); m/z 300 (M', 6) and 243 (100). 4-Isopropyl-l-benzopyran-2-one 1Of. (Pr'MgBr, Et,O, -50 "C, 78) b.p. 85-90 "C (0.9 mmHg) lit.,' 85-90 "C (0.9 mmHg) (Found: C, 76.75; H, 6.2. Calc. for C,,HI2O2: C, 76.6; H, 6.4); 6,(80 MHz; CDCl,) 1.31 (6 H, d, J 7), 3.30 (1 H, m), 6.27 (1 H, d, J 1) and 7.05-7.6 1 (4 H, m); m/z 188 (M +,5 1) and 145 (100). 4-Chloro-2H- l-benzopyran-2-01 1la. (DIBAH, PhMe, -50 "C, 75) 6H(80 MHz; CDCl,) 5.85 (1 HA, JAB 4), 5.95 (lHB, JAB 4) and 6.82-7.95 (4 H, m); this compound is unstable and during the purification it is transformed into 4H- l-benzopyran- 4-one 12a.l' (Z)-3-Ethyl-5-(o-hydroxyphenyf)non-4-en-3-o114.Character-ized as the cyclization product 4-butyl-2,2-diethyl-2H- 1 -benzo- pyran 15; the reaction mixture of 2c with BuMgBr (Table 2) was subjected to a work-up as described in the paragraph (d).After chromatographic separation, 15 was obtained in (68); b.p. 140-145 "C (1.5 mmHg) (Found: C, 83.65; H, 9.7. Cl7HZ4O requires C, 83.55; H, 9.9); S,(80 MHz; CDC1,) 0.75-0.94 (9 H, m), 1.61-1.22 (8 H, m), 2.33 (2 H, t, J7), 5.60 (1 H, t, J 1) and 6.77-7.27 (4 H, m); m/z 244 (M+, 3) and 215 (100). (Z)-5-Butyl-3-(o-hydroxyphenyl)non-3-en-5-of16. Character-ized as the cyclization product 2,2-dibutyl-4-ethyl-2H- l-benzo- pyran 17;the reaction mixture of 2e with EtMgBr (Table 2) was subjected to a work-up as described in the paragraph (d).After chromatographic separation, 17 was obtained in (63); b.p. 145-150°C (1.7 mmHg) (Found: C, 84.0; H, 10.5. C19H28O requires C, 83.8; H, 10.4); 6,(80 MHz; CDCl,) 0.86-1.98 (9 H, m), 1.20-1.61 (12 H, m), 2.27-2.54 (2 H, m), 5.26 (1 H, t, J 1) and 6.67-7.17 (4 H, m); m/z 272 (Mf,l) and 215 (100). Acknowledgements Authors are gratefully indebted to the Junta de Castilla y Leon by financial support of this work. References 1 A. Alberola, B. Calvo, A. Gonzalez, M. Vicente and S. G. Granda, J. Chem. SOC., Perkin Trans. 1, 1991,203. 2 R.W. Ticle,T. Melton and J. A. Elvidge,J.Chem. SOC., Perkin Trans. 1, 1974,596. 3 Chr. Ivanov and A. Bojilova, Synthesis, 1974,708. 4 G. A. Holmber, Acta Chem. Scand., 1961,15, 1255. 5 I. Renvall, Acta Acad. Aboensis, Math. Phys., 1969, 29, 1 (Chem. Absrr., 1970,72,66737 p). 6 H. Newmann and D. Seebach, Chem. Ber., 1978,111,2785. 7 E. J. Corey and I. Kuwajima, J.Am. Chem. SOC., 1970,92,395. 8 Y. Yamamoto, S. Yamamoto, H. Yatagai, Y. Ishihara and K. Maruyama, J. Org. Chem., 1982,4?, 119. J. CHEM. SOC. PERKIN TRANS. 1 1992 9 D. P. Spalding, H. S. Mosher and F. C. Withmore, J. Am. Chem. SOC., 14 J. J. Talley, Synthesis, 1983, 845. 1950,72,5338. 15 B. Fohlish, Chem. Ber., 1971, 104. 10 E.H. Woodrukk, Org. Synth., 1944,24,69. 11 A. Alberola, A. G. Ortega, R. Pedrosa, J. L. Perez and J. F. Rodriguez, J. Heterocvcl. Chem., 1983,20,715. 12 A. Alberola, F. Alonso and A. Gonzalez, An. Quim., 1982,7, 15. Paper 2/03578B 13 V. Prey, Monatsh. Chem., 1949, 80, 790 (Chem. Abstr., 1950, 44, Received 7th July 1992 7795). Accepted 17th July 1992
机译:J. CHEM. SOC. PERKIN TRANS. 1 1992 4-氯香豆素与有机金属试剂的反应。试验基苯并吡喃,4-C丙苯并吡喃,4-AI基库马和0-羟基苯基丙-2-炔醇的合成 安吉尔·阿尔贝罗拉,布兰卡·卡尔沃,阿方索·冈萨雷斯·奥尔特加*和拉斐尔·佩德罗萨 Departamento de Quimica Organica,巴利亚多利德大学,47005 巴利亚多利德,西班牙 4-氯香豆素已被证明是一种高度通用的起始材料。因此,它允许直接或通过简单的附加转化来选择性合成 4-烷基香豆素(在 Et,O 中含有 R,CuLi 或 Pr'Mg Br 在 THF 中)、2-氯-2-(0-羟基苯基)烯丙醇或其 4-氯-2H-1-苯并吡喃衍生物(在 THF 中含有 RMgX)、2-(邻羟基苯基)丙-2-炔醇(当在后一个反应中使用非酸性水解时)和 2,2,4-三烷基1-2H-l-苯并吡喃(当 RMgX 或 R 过量时,使用AI试剂)。作为针对化合物 2 合成化合物 3 的更一般项目的一部分,观察到卤代-2H-1-苯并吡喃,我们研究了(MeMgI 除外)在使用较长反应时间时的行为。4-氯香豆素 1 走向有机金属试剂。然而,在甲苯、乙醚或THF中,在25“C下,卤素在C-4处存在一小时,可改变反应性或更高,摩尔比为8/1,主要产物是复合杂环,使其对经验变化更敏感,其收率中等至非常好(51-83%)。采用4-氯香豆素与有机金属衍生物不同反应的实验条件,得到产物的复合混合物(表1)。然而,(RMgX,R,A1,RLi,R,CuLi)可以导致化合物2的复杂混合物的分离和纯化,只有化合物(方案l)才能实现,这取决于有机物的性质-通过从它们的金属试剂的粗反应混合物中重结晶,反应和水解条件。以高产形式形成。尝试通过其他方法(包括快速色谱法)纯化,将与镁衍生物的反应-伯烷基镁磅2转化为脱氯化氢5,或环化8产物.允许的卤化铵(R=甲基,乙基,丙基或丁基)在化合物3中也观察到这种行为,其自动选择性制备化合物2或3。因此,当易转化为2,2,4-三烷基1-2H-l-苯并吡喃9.反应是在THF(四氢呋喃)中进行的,在0“C为值得注意的是,水解条件对于获得最大1 h,摩尔比RMgX/l,5/1,收率2和3的好收率至关重要;从而使用冷饱和水溶液(7249%)得到化合物2,而反式NH,Cl(或非常稀的酸性溶液和冰)后继H+WH00 Cl CI A R 1 2 3 4 RR+q H + HWH0 OH 5 6 7 + CI A A 8 9 10 qR CI 0 11 12 Scbeme 1 a R = H, b R = Me,c R = Et,d R = Pr,e R = Bu,f R = Pri,g R = Bu'。试剂:i、RM;ii, H,O.表1 化合物1与格氏衍生物RMgX的反应 溶剂 T/“C tlh l/RM MeMgI PhMe 0 2 Et,O 0 2 THF 0 2 EtMgI PhMe 25 2 Et20 25 2 THF 0 2 EtMgBr PhMe 25 1 Et20 25 1 THF 25 1 THF 0 1 THFb 0 1 PrMgBr PhMe 25 1 PhMe 0 1 Et20 25 1 Et,O 0 1 THF 25 0.5 THF 0 1 THF 0 1 BuMgBr PhMe 25 1 PhMe 0 1 Et20 25 1 THF 25 1 THF 0 I Pr'MgBr PhMe 25 1 PhMe 0 1 Et20 25 0.5 EtZO -50' 20 Et20 0 1 THF 25 0.5 THF -50' 20 THF 0 1 THF 0 1 THFd 25 1 Et20 -50 0.5 THF -50 0.5 所有表格中的产率均根据 NMR 谱图计算室温 mixture.to 反应。检测阴性(THF-二苯甲酮钠,无色溶液)。J. CHEM. SOC. PERKIN TRANS. 1 1992 ~ ~~ ~ 产物(%产率) 2 3 10 5b 3f(30) Sf(28)3f(79) 3f(50) 3f(75) 31(40) Sf(65) 1Of (79) 1Of (80) 1Of (69) 水解。在-50“C下加热30分钟,然后在室温下加热立即处理并除去溶剂。允许上述产品的合成。异丙基溴化镁对1的行为与伯镁衍生物所表现出的行为不同。最重要的区别是有可能在-50“C的乙醚或THF中以非常好的收率(69-80%)获得4-烷基香豆素1of(1,4-加成消除)。在这种情况下,在高于0“C的温度下,双加成是主要工艺,2f的最佳收率(85%)是甲苯而不是THF。这种行为的原因是竞争性的 1P-加成过程不发生在该溶剂中,'-5 并且异丙基溴化镁的较低反应性可以更好地控制导致化合物 13 的反应(方案 2)。不幸的是,其他仲烷基镁衍生物,如仲丁基或环戊基溴化镁,以非常低的收率产生4-烷基香豆素。对反应的监测表明,三烷基衍生物3可以通过10(对于Pr'MgBr)或通过醇盐13(对于RMgBr;R = Et, Pr, Bu) (方案 2)。后一种可能性为三取代的苯并吡喃开辟了一条通用途径,这些苯并吡喃具有与C-2和C-4连接的不同烷基。因此,这些底物可以通过适当地改变每个步骤中使用的有机金属试剂(方案3)(表2)从化合物1中获得。il c10 3 方案 2 试剂:i、RM;ii, H,O 另一方面,尽管 3-(o-羟基苯基)丙-2-炔基醇 5 在反应过程中可以通过脱氢卤化形成,6 但它们在最终混合物中的比例高度依赖于水解条件。因此,当反应仅用水水解时,衍生物5作为主要化合物(58-79%)(柱层析后),而用醋酸淬灭反应混合物J.CHEM. SOC. PERKIN TRANS.I 1992 3 R=W 9 R=R' 14 R = Et, R'= BU 15 R=Et,R'=Bu 16 R=Bu,R'=Et 17 R=Bu,W=Et 方案 3 试剂:i, RMgX;ii, H20, iii, R'MgX 表2 化合物2与RM的反应 2 RM溶剂“ t/h 产物(%产率) 2b Me,AI CH2C12 20 2c zc EtMgBr Et,AI Et20 PhMe 12 20 2c 2e 2e 2e 2e BuMgBrBuMgBr BuMgBr EtMgBr BuAl Et,O Et,O PhMe Et20 PhMe 12 12 12 12 20 ~~~~ ” 反应在25“C下进行;摩尔比 2/RM:1/4。表3 化合物1与R,AI RM的反应 溶剂“T/T” 1/RM产物(%产率) Me,Al PhMe 25 3b (-1CH,Cl, 25 9b (49) CH,C12 25 9b (65) Et,AI PhMe 0 PhMe 25 CH,Cl, 25 CH,Cl, -50b Et,O 25 THF 25 Bu,AI PhMe -50b PhMe 0 PhMe 25 Bu',AI PhMe -50b PhMe 0 PhMe 25 Bu',Al-H PhMe -50 1 /6 2a (78) PhMe -50 112.5 lla (SO) PhMe 25 113 2a (75) Et,O -50 1/2.5 lla (40), 1 (45) “ 反应在-50”C下进行20 h.30 min,然后加热至室温。 得到化合物2,s 和在某些情况下,7.这些结果表明,脱氢卤化过程主要发生在非酸性条件下的水解期间或之后。与有机铝衍生物的反应-用1控制铝衍生物的反应比上面报道的格氏试剂更困难。因此,从实用的角度来看,在25“C下进行反应,得到产物3或4更为方便。在这种情况下,甲苯中的三乙基和三丁基铝以非常好的收率(68-85%)产生化合物3;但三异丁基铝对空间要求更高,还原性更高,产生了烷基化还原化合物 4 作为主要成分 (52- 65%),双还原产物 2a 作为次要成分的混合物 3077 表 4 化合物 1 与锂衍生物的反应 RLi 溶剂 T/“C l/RLi t/h 产物(% 产率) ~ BuLi PhMe 25 1/4 Et,O -50 1/4 Et20 25 1/4 Thf 25 1/4 MeLi Et,O -50 1/6 2 Et20 -50 1/4 2 Et,O -50“ 1/6 12 THF -50 1/6 2 THF -50 1/4 2 ” 在 -50 “C 下 30 分钟,然后加热至室温。表5 化合物1和10与有机香豆素R的反应,CuLi溶剂“T”/T产物(%产率) 1 Me,CuLi Et,O -50 lob (90) Me2CuLi THF -20 lob (65) Me,CuLi Et,O -50 lob (85) Me,CuLi THF -20 lob (69) Bu2CuLi Et,O -50 1Oe (48), 2e (15) Bu,CuLi Et,O -50 1Oe (65) Bu,CuLi THF -50 1Oe (70) BuCu Et,O -50 1Oe(->10b Me,CuLi Et20 -50 lob (95) 10b Bu,CuLi Et20 -50 10b (90) 1Oe Me,CuLi Et20 -50 1Oe (95) 1Oe Me,CuLi Et20 -50 1Oe (87) “ 反应以摩尔比l/R,CuLi,1/3进行2 h,使用三氟化硼-乙醚络合物。(10-34%)(表 3)。这些有机金属试剂在乙醚或四氢呋喃中的还原特性增加,但它们对香豆素的反应性降低,因此从合成的角度来看,反应是不可能的。由于三甲基铝的反应性低于三乙基或三丁基铝,因此必须在回流甲苯中进行反应。然而,3小时后,仅获得复杂的产物混合物。然而,当在CH2C12中进行反应时,不能使用MeMgI获得的三甲基苯并吡喃9b可以以中等产率(65%)合成。化合物 1 与 DIBAH 在室温下反应得到化合物 2a。然而,在较低的温度下(-50“C,2 h,l/DIBAH,1/2.5),得到的产物是lla,其非常不稳定,纯化后分离为色酮12a。与锂衍生物反应。-锂衍生物通过1,2-加成反应,但在我们的例子中,它们没有优先导致预期的二烷基衍生物2(表4)。取而代之的是,脱氯化氢产物5e在1与丁基锂的反应中作为主要成分(25-60%)获得。另一方面,甲基锂与1反应得到邻羟基苯乙炔6作为主要化合物。该降解产物既未出现在与其他有机金属化合物的反应中,也没有出现在与丁基锂的反应中。虽然化合物6可以在反应过程中形成,但主要量必须在水解过程中形成,因为当反应混合物进行乙酰化时,化合物6会减少或消失。与0rganocuprates-二甲基和二丁基铜酸锂及其三氟化硼-二乙醚复合物反应与4-氯香豆素1反应,分别得到4-甲基香豆素10b(90%)和4-丁基香豆素1Oe(65%)的良好收率。化合物 10 在试剂中是稳定的,它们可能是通过 c~pulation,~ 而不是 1,4-加成-消除过程形成的。相反,烷基铜酸盐通过1,4加成过程与a-P-不饱和酯的反应比锂二烷基铜酸盐更好,与化合物1反应导致化合物10的低产率(表5)。结论。+-氯香豆素已被证明是与有机金属试剂反应中非常有用的底物;无论是通过其在引入不同取代基方面的多功能性,还是由于反应产物的性质。只要能严格控制反应条件,这些原本繁琐无趣的反应就会成为有用的合成程序。实验 MP 是在带有加热装置的 Leit Laborlux D 显微镜上测量的,并且未校正。b.p.s 对应于 kugelrohr Buchi GKR-51 中的烤箱温度。在布鲁克 AC80 波谱仪上记录 NMR 波谱,并给出 SiMe 的下场化学位移,作为内标,J 值以 Hz 为单位。 质谱在惠普 5988A 质谱仪上测量。起始原料4-氯香豆素的制备如前所述。化合物1与有机物的反应。合成4-甲基-1-苯并吡喃-2-酮10b和4-丁基-1-苯并吡喃-2-酮10e.-A磁力搅拌的有机噁酸或三氟化硼-乙醚络合物(1.6mmol)在适当的溶剂(表5)(20cm3)N下,冷却至-50“C,滴加化合物1(0.2g,1.1mmol)在干燥溶剂(20cm3)中的溶液。搅拌混合物60min,并用饱和水NH,Cl(15cm3)淬灭。用Et,O(3 x 20 cm3)提取产物,并用水和盐水依次洗涤提取物。将有机层在硅胶上以甲氯为洗脱液进行色谱,得到化合物10b(0.14g,80%)和1Oe(0.15g,64%).4-甲基-1-苯并吡喃-2-酮10b m.p. 81-82“C(lit.”,82“C)(Found: C, 74.8;H,4.85。计算值 CloH,O,: C, 75.0;H,5.0%);6,(80兆赫;CDCl,) 2.51 (3H, d, J l), 6.18 (1 H, q, J 1) 和 6.85-7.61 (4 H, m)。4-丁基-1-苯并吡喃-2-酮 10e m.p. 68.5-69.5“C (lit.,' 67-68”C) (Found: C, 77.35;H, 6.8.计算值 for C13HldO2: C, 77.2;H,7.0%);6,(80兆赫;CDCl,) 0.99 (3 H, td, J 6, l), 1.09-1.98 (4 H, m), 2.77 (2 H, m),6.26 (1 H, t, J 1) 和 7.12-7.61(4 H, m);m/z 202 (M', 20%) 和 160 (100)。化合物1与有机镁、有机石和有机铝化合物的反应。一般程序.-在适当的溶剂(100cm3)中向4-氯香豆素1(5.5mmol)的磁力搅拌溶液中,在氮气下滴加(30min)有机金属化合物(见表1,3和4)。在反应结束时(由TLC监测),将混合物水解。将有机层倒出,干燥(MgS04),并在室温下减压除去溶剂。水解条件和纯化方法取决于所需产物,如下所述。(a) 1,L-二烷基-3-氯-3-(邻羟基苯基)丙-2-烯-1-01S 2.反应用饱和NH、Cl水溶液水解,从反应混合物中经C14C或CHCl重结晶分离纯化产物。(6)1,1,3-三烷基-3-(邻羟基苯基)丙-2-烯-1-01S 3.反应混合物用冰水淬火,酸化至金属氢氧化物刚好溶解,然后用 NaHCO 中和 J. CHEM. SOC. PERKIN TRANS. 1 1992。以甲苯-己烷(1/20)或以CH2C12为洗脱液,在硅胶上快速色谱法纯化了化合物。化合物3e不能通过重结晶纯化,蒸馏时将其转化为2,2,4-三烷基-2H-1-苯并吡喃9e。(c) 1,L-二烷基-3-(邻羟基苯基)丙-2-炔-1-01S 5.将反应混合物在室温下用水水解。用CH2C12-Et,O:20/1作为洗脱液,在硅胶上通过柱层析纯化目标化合物。(d)2,2-二烷基-4-氯-2H-1-苯并吡喃8.将反应的浓度在硅胶(x 3 w / w)l1回流下加热1 h。标题化合物8在硅胶上通过柱层析纯化,以己烷为洗脱液。(e)2,2,4-三烷基-2H-l-苯并吡喃9.将1,1,3-三烷基-3-(邻羟基苯基)丙-2-烯-1-01S3的反应混合物浓缩后,按(d)所述处理浓缩液。下面给出了产品的物理和光谱特性、优化的实验条件和化学产率。(E)-3-氯-3-(邻羟基苯基)丙-2-烯-1-01 2a. (DIBAH, PhMe, -50 “C, 72%) 熔点 74.5-75.5”C (Found: C, 58.3;H,4.75.C,H,ClO,需要C,58.6;H,4.9%);6,(80兆赫;CDCl,) 3.95 (2 H, d, J 7), 6.22 (1 H, t, J 7) 和 6.72-7.28(4 H, m);m/z168(M+ + 2 -H20, 17%)、166 (M+ -H20,55) 和 165 (100)。(E)-4-氯-4-(邻羟基苯基)-2-甲基-3-丁烯-2-醇2b.(MeMgI,THF,0“C,75%) m.p. 106-107”C (发现:C,62.2;H,6.4。C,,H,,ClO,要求C,62.1;H,6.2%);6,(80兆赫;CDCl,) 1.26 (6 H, s), 6.29 (1 H, s) 和 6.78-7.33(4 H, m);m/z 196(M+ + 2 -H,O, 479,194(M+ -H,O, 11)和 179 (100)。E)-1-氯-3-乙基-1-烯-3-012C.1-(邻羟基苯基1)戊-(EtMgBr,THF,0“C,69%);m.p. 94-95 “C(发现:C,64.8;H, 7.3.C13H1,C102 需要 C, 64.9;H,7.1%);6,(80兆赫;CDCl,) 0.87 (6 H, t, J7),1.52 (4H, m), 6.20 (1 H, s) 和 6.78-7.25(4 H, m);m/z242 (M+ + 2, l%)、268 (M', 1) 和 71 (100)。(Z)-3-乙基-5-(邻羟基苯基)庚-4-烯-3-013C.(EtMgBr,PhMe,25“C,77%)熔点77.8-78.8”C(发现:C,76.7;H,9.65。C15H22O2 要求 C,76.9;H,9.5%);aH(8OMHz;CDCl,) 0.97 (9H, m), 1.48 (4 H, q, J7), 2.25 (2H, qd, J7, l), 5.58 (1H, t, J 1) 和 6.79-7.21(4 H, m);m/z 216 (M+ -H20,3%) 和 187 (100).0-羟基苯基)-4-丙基壬-(2)-6-( 5-烯-4-01 3d. (PrMgBr, Et,O, 25 “C, 73%) b.p. 140-145 ”C (2mmHg) (标题化合物分解为 2,2,4-三丙基-2H-1-苯并吡喃 9d);6,(80兆赫;CDCl,) 0.97 (9 H, m), 1.05-1.72 (10 H, m), 2.20 (2H,td,J7,1), 5.58(1H,t,Jl)和 6.83-7.18(4H,m);m/z216 (M+ -H20,2%) 和 215 (100)。(Z)-5-丁基-7-(0-羟基苯基)十一-6-烯-5-01 3e.(Bu,Al,PhMe,25“C,79%)黄油(该化合物分解为J.CHEM.SOC.PERKIN TRANS.1 1992 2,2,4-tributyl-2H-l-benzopyrun9e);6,(80兆赫;CDC1,) 0.80-1.26 (9 H, m), 1.28-1.62 (16 H, m), 2.15-2.42 (2 H, m), 5.59 (1 H, m) 和 6.7G7.14 (4 H, m);m/z 300 (M+ -H20, 6%) 和 243 (100)。(Z)-~-(O-ffydro.uyphenyl)-3-异丙基-2,7-二甲基庚-4-烯-3-013f.(Pr'MgBr, Et20, 25“C, 75%) m.p.93.6-94.6”C (发现: C, 78.1;H,10.4。C18H2802 要求 C,78.2;H,10.2%);6,(80兆赫;CDCI,) 0.66-0.99 (12 H, m), 0.94 (16 H, d, J7), 1.83 (2 H, m), 2.39 (1 H, sept d, J 7, l), 5.42 (1 H, d, J 1) 和 6.50-7.21 (4 H, m);m/: 258 (M+ -H20, 2%) 和 71 (100).(Z)-6-(邻羟基苯基苯Z)-2,8-二甲基噤-5-烯-4-O14g.(Bu',-Al,PhMe,25“C,61%) m.p. 93.6-94.6 ”C(lit.“,93-94”C) (发现:C,80.8;H,10.2。计算值 C1,HZ6O2: C, 80.9;H,10.3%);6,(80兆赫;CDCl,) 0.62-1.12 (12 H, m), 1.21-2.05 (4 H, m), 2.23 (2 H, m), 4.15 (1 H, dt, J9,7), 5.49 (1 H, d, J9) 和 6.59-7.1 1 (4 H, m);mi= 244 (M+ -H20, 9%) 和 187 (100).4-(邻羟基苯基1)-2-甲基-3-丁-2-o15b.(MeMgI, PhMe, 0 “C, 64%) m.p. 131-132 ”C (发现: C, 75.1;H,6.7。C, ,H1 202要求C, 75.0;H,6.9%);aH(80兆赫;CDCl,)1.65(6H,s),6.70-6.93(2H,m)和7.12-7.32(2H,m);m/z 176(M+, 14%) 和 158 (100)。3-乙酰/-1-(邻羟基苯基1)戊-1-炔-3-醇 5c. (EtMgBr, THF, 0 T, 67%) m.p. 72.3-73.3 “C (发现: C, 76.25;H,7.85。Ct ,H 602需要C,76.4;H,7.9%);6,(80兆赫;CDCl,) 1.08 (6 H, t, J 7), 1.78 (4 H, q, J 7) 和 6.69-7.30 (4 H, m);m/z 204 (M+, 7%) 和 186 (100)。1-(O-Hydro.~~~phenl)-3-丙基己基-1 -YN-3-01 5d. (PrMgBr, THF, O“C, 60%) 熔点 6647°C (Found: C, 77.7;H,8.5。C15H2,Oz 需要 C, 77.55;H,8.7%);6,(80兆赫;CDCl,) 0.96 (6 H, t, J 7), 1.45-1.83 (8 H, m) 和 6.71-7.33 (4 H, m);m/z 232 (M+, 4%) 和 43 (100).3-丁基-l-(邻羟基苯基)庚-l-炔-3-醇9.(BuMgBr, PhMe, 0 “C, 59%) 熔点 63.5-64.5 ”C (发现: C, 78.6;H,9.15。C1 7H2402 需要 C, 78.4;H,9.3%);6,(80兆赫;CDC13)0.90-1.08(6小时,米),1.15-1.70(12小时,米)和6.71-7.32(4小时,米);m/z 260 (M +,1%) 和 203 (100)。L-(O-羟基苯基)-3-异丙基-4-甲基-戊-L-炔-3-01 5f. (Pr'MgBr, THF, 0 “C, 60%) m.p. 100.5-101.5“C(发现:C,77.65;H,8.6。C15H2,02 需要 C, 77.55;H,8.7%);6,(80兆赫;CDCl,) 1.08 (6 H, d, J7), 1.10 (6 H, d, J7), 2.05 (2 H, sept, J7) 和 6.70-7.32 (4 H, m);m/z 232 (M +,1%) 和 198 (100)。邻羟基苯乙炔6.(MeLi, Et,O, -50“C, 60%) b.p. 79-82 ”C (20 mmHg) [lit.,', 74.5 (15 mmHg)];dH(80兆赫;CDCI,) 3.45 (1 H, s),6.65-7.65 (4 H, m);m/z 119 (M+ + 1,8%) 和 118 (Mf, 100).1 -一 7b.3-羟基-1-(邻羟基苯基)-3-甲基基丁屯-(MeMgI, THF, 0 “C, 60%) 用 AcOH 水解,以 PhMe 为洗脱液通过色谱纯化;b.p. 105-110 “C (1.5 mmHg) (发现: C, 68.15;H, 7.4, C 1H 1403 需要 C, 68.0;H,7.3%);6,(80兆赫;CDCl,) 1.36 (6 H, s), 3.16 (2 H, S) 和 6.78- 7.79 (4 H, m);m/z 194 (M', 5%) 和 121 (100)。4-氯-2,2-二甲基-2H-1-苯并吡喃 8b. (MeMgI, THF, 0 “C, 70%) b.p. 98-100 ”C (1.5 mmHg) (Found: C, 67.6;H,5.6。C H 'ClO 需要 C, 67.9;H,5.7%);6,(80兆赫;CDCl,) 1.44 (6 H, s), 5.71 (1 H, s) 和 6.70-7.51 (4 H, m);m/z 196 (M' + 2, 373,194 (M', 10) 和 170 (100)。 4-氯-2,2-二乙基-2H-1-苯并吡啶 8c (EtMgBr, THF, 0 “C, 65%) b.p.100-105 ”C (1.5 mmHg) (Found: C, 70.0;H,6.6。Cl3HI5C10 需要 C,70.1;H,6.8%);6,(80兆赫;CDCl,) 0.93 (6 H, t, J7), 1.56-1.86 (4 H, m), 5.62 (1 H, s) 和 6.70-7.46 (4 H, m);m/z 224 (M+ + 2, l%), 222 (M', 3) 和 193 (100).4-氯-2,2-二丙基-2H-1-苯并吡喃 8d. (PrMgBr, THF, 0 “C, 61%) b.p. 105-110 ”C (0.9 mmHg) (Found: C, 72.0;H,7.5。C15H19CI0要求C,71.8;H,7.6%);6,(80兆赫;CDCl,)0.80-1。31 (6 H, m), 1.37-1.79 (8 H, m), 5.64 (1 H, s) 和 6.68-7.46 (4 H, m);m/z 196 (M' + 2, 5%)、194 (M', 15) 和 207 (100)。4-氯-2,2-二丁基-2H-1-苯并吡喃8e.(BuMgBr,THF,0“C,70%)b.p.135-139”C(2mmHg)(发现:C,73.4;H,8.5。C17H2,C10需要C,73.2;H,8.3%);6,(80兆赫;CDCI,) 0.73-1.05 (6 H, m), 1.05-1.94 (12 H, m), 5.63 (1 H, s) 和 6.67- 7.45 (4 H, m);m/z 196 (M+ + 2,1%), 194 (M+, 3) 和 221 (100).2,2,4- 三聚体-2H- l-苯并吡喃 9b. (Me,Al, Cl,CH2, 25 “C, 62%) b.p. 60-65 ”C (1 mmHg) [lit.,14 63-65 “C (1 mmHg)] (发现: C, 82.55;H,8.2。计算值 C12H14O: C, 82.7;H,8.0%);&(SO 兆赫;CDC13)1.39(6 H,s),1.98(3 H,d,J l),5.39(1 H,q,J 1)和6.74-7.20(4 H,m);m/z 174 (M', 49%) 和 159 (100)。2,2,4-三丙基-2H-1-den:mpyran 9d. (PrMgBr, Et,O, 25“C, 70%) b.p. 120-125”C (1.3 mmHg) (Found: C, 83.6;H,9.9。CI8H2,O需要C,83.7;H,10.1%);6,(80兆赫;CDCl,) 0.80-1.05 (9 H, m), 1.26-1.71 (10 H, m), 2.36 (2 H, t, J 7), 5.26 (1 H, t, J 1) 和 6.70-7.17 (4 H, m);m/z 258 (M+, 2%) 和 215 (100)。2,2,4-三丁基-2H-1-苯并吡啶9e.(Bu,Al,PhMe,25“C,75%)b.p.145-150”C(1.5mmHg)(发现:C,83.8;H,10.6。C21H32O 需要 C,83.95;H,10.7%);aH(80兆赫;CDCl,) 0.95 (9 H, m), 1.15-1.71 (16 H, m), 2.45 (2 H, t, J7), 5.27 (1 H, s) 和 6.63-7.19 (4 H, m);m/z 300 (M', 6%) 和 243 (100)。4-异丙基-L-苯并吡喃-2-酮 1Of.(Pr'MgBr, Et,O, -50 “C, 78%) b.p. 85-90 ”C (0.9 mmHg) [lit.,' 85-90 “C (0.9 mmHg)] (Found: C, 76.75;H,6.2。计算。C,,HI2O2:C,76.6;H,6.4%);6,(80兆赫;CDCl,) 1.31 (6 H, d, J 7), 3.30 (1 H, m), 6.27 (1 H, d, J 1) 和 7.05-7.6 1 (4 H, m);m/z 188 (M +,5 1%) 和 145 (100)。4-氯-2H-L-苯并吡喃-2-01 1LA.(DIBAH,PhMe,-50“C,75%) 6H(80 MHz;CDCl,) 5.85 (1 HA, JAB 4), 5.95 (lHB, JAB 4) 和 6.82-7.95 (4 H, m);该化合物不稳定,在纯化过程中转化为4H-l-苯并吡喃-4-酮12a.l'(Z)-3-乙基-5-(邻羟基苯基)壬-4-烯-3-O114。表征为环化产物4-丁基-2,2-二乙基-2H-1-苯并吡喃15;将2c与BuMgBr(表2)的反应混合物进行(d)段所述的检查。色谱分离后,得到15个(68%);b.p. 140-145 “C (1.5 mmHg) (发现: C, 83.65;H,9.7。Cl7HZ4O需要C,83.55;H,9.9%);S,(80 MHz;CDC1,) 0.75-0.94 (9 H, m), 1.61-1.22 (8 H, m), 2.33 (2 H, t, J7), 5.60 (1 H, t, J 1) 和 6.77-7.27 (4 H, m);m/z 244 (M+, 3%) 和 215 (100)。(Z)-5-丁基-3-(邻羟基苯基)壬-3-烯-5-of16.表征为环化产物2,2-二丁基-4-乙基-2H-L-苯并吡喃17;将2e与EtMgBr的反应混合物(表2)进行如(d)段所述的检查。色谱分离后,得到17个(63%);b.p. 145-150°C (1.7 mmHg) (Found: C, 84.0;H,10.5。C19H28O 要求 C,83.8;H,10.4%);6,(80兆赫;CDCl,) 0.86-1.98 (9 H, m), 1.20-1.61 (12 H, m), 2.27-2.54 (2 H, m), 5.26 (1 H, t, J 1) 和 6.67-7.17 (4 小时, 米);m/z 272 (Mf,l%) 和 215 (100)。致谢 作者感谢卡斯蒂利亚-莱昂军政府对这项工作的财政支持。参考文献 1 A. Alberola, B. Calvo, A. Gonzalez, M. Vicente and S. G. Granda, J. Chem. SOC., Perkin Trans. 1, 1991,203.2 R.W. Ticle,T. Melton 和 J. A. Elvidge,J.Chem. SOC.,Perkin Trans. 1,1974,596。3 Chr. Ivanov 和 A. Bojilova,《综合》,1974,708 年。4 G. A. Holmber, 化学学报, 1961,15, 1255.5 I. Renvall, Acta Acad. Aboensis, Math. Phys., 1969, 29, 1 (Chem. Absrr., 1970,72,66737 p).6 H. Newmann 和 D. Seebach,Chem. Ber.,1978,111,2785。7 E. J. Corey 和 I. Kuwajima, J.Am. Chem. SOC., 1970,92,395.8 Y. Yamamoto, S. Yamamoto, H. Yatagai, Y. Ishihara and K. Maruyama, J. Org. Chem., 1982,4?, 119.J. CHEM. SOC. PERKIN TRANS. 1 1992 9 D. P. Spalding, H. S. Mosher and F. C. Withmore, J. Am. Chem. SOC., 14 J. J. Talley, Synthesis, 1983, 845.1950,72,5338. 15 B. Fohlish, Chem. Ber., 1971, 104.10 E.H. Woodrukk, Org. Synth., 1944,24,69.11 A.阿尔贝罗拉、A.G.奥尔特加、R.佩德罗萨、J.L.佩雷斯和J.F.罗德里格斯、J.Heterocvcl。化学, 1983,20,715.12 A. Alberola, F. Alonso 和 A. Gonzalez, An. Quim., 1982,7&, 15.论文 2/03578B 13 V. Prey, Monatsh.Chem., 1949, 80, 790 (Chem. Abstr., 1950, 44, Received 7th July 1992 7795).录用日期: 1992年7月17日

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号