首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >The Dimroth rearrangement. Part XVIII. Syntheses and rearrangement of 4-iminoquinazolines and related systems
【24h】

The Dimroth rearrangement. Part XVIII. Syntheses and rearrangement of 4-iminoquinazolines and related systems

机译:Dimroth 重排。第十八部分.4-亚氨基喹唑啉及相关体系的合成与重排

获取原文
获取外文期刊封面目录资料

摘要

2182 J.C.S. Perkin IThe Dimroth Rearrangement. PartXV1II.l Synthesesand Rearrangementof 4-lminoquinazolines and Related SystemsBy Desmond J. Brown and Kazuharu lenaga, John Curtin School of Medical Research, P.O. Box 334,Canberra City, Australia 2601o- Aminobenzonitrile is converted by triethyl orthoformate-acetic anhydride into its N-ethoxymethylene derivative(2). which can undergo alkylaminolysis followed by spontaneous cyclization to 3-alkyl-3.4-dihydro-4-imino-quinazolines (3 ; X = CH) ; these rearrange in alkali to 4-alkylaminoquinazolines. The related 3.4-dihydro-4-imino-2.3-polymethylenequinazolines (8 ; X = NH) are also prepared from o-aminobenzonitrile, either bycondensation with appropriate cyclic imino-ethers or by cyciodehydration with lactams ; when the 2,3- poly-methylene chain is longer than five CH, units, Dimroth rearrangement occurs in alkali to give the isomeric p-bridged2,N(4)-polymethylene-4-aminoquinazolines (9 ; X = CH).Aza-analogues of the above systems are prepared byanalogous routes. Rates of rearrangement are discussed.WE have reported recently some new synthetic routes to1,6-dihydro-6-iminopyrimidines bearing a l-alkyl sub-stituent or a 1,Z-polymethylene bridge; also thesubsequent Dimroth rearrangement of such imines into6-alkylaminopyrimidines or 2,N( 6) -polymethylene-6-aminopyrimidines, respectively. This work is nowextended to the 4-iminoquinazolines (3; X = CH) and(8; X = NH) and to the related systems (3; X = N)and (10) ; Dimroth rearrangement has been studied onlybriefly in the 2-iminoquinazoline series and even lessin the 4-iminoquinazoline group by use of unsatisfactorycompounds such as the imine (3a).For the synthesis of simple 3-alkyl-3,4-dihydro-4-iminoquinazolines (3; X = CH), a method analogous tothat used for 64minopyrimidines proved effective:o-aminobenzonitrile (1; X = Y = CH, R = H) con-densed with triethyl orthoformate in the presence ofacetic anhydride to give et hoxymet hyleneaminobenzo-nitrile (Z), which underwent ready aminolysis by methyl-,isopropyl-, or t-butyl-amine followed by spontaneouscyclization to give the imines (3b-d) ; a similar reactionwith triethyl orthoacetate gave the 2,3-dimethyl imine(3e) but when 2-amino-6-methylbenzonitrile (1 ; X =Y = CH, R = Me) was treated with triethyl ortho-formate followed by methylamine, the isomer (4f) of theexpected irnine (3f) was the sole product.The samegeneral synthesis was used to convert 2-aminopyridine-3-carbonitrile (1; X = N, Y = CH, R = H) into theiminopyridopyrimidine (3g). The imine (3e) was alsomade by a new single-stage route involving condensationof o-aminobenzonitrile with methyl N-methylacetimi-date MeC(:NMe)*OMe in boiling xylene containingphosphorus pentoxide.The simple imines (3b-e and g) rearranged to theirrespective isomers (4b-e and g) by warming in M-alkali;in a single case (3e) some hydrolysis occurred also to givea little of the quinazolinone (5).The tricyclic imines (8; X = NH, n = 5-7) wereeach made by two methods: (a) fusion of o-amino-Part XVII, D.J. Brown and K. Ienaga, Austral. J . Chem.,D. J. Brown and K. Ienaga, J.C.S. Perkin I, 1974, 372.H. L. Wheeler, T. B. Johnson, and D. F. McFarland,J . Amer. Chem. SOC., 1903, 25, 787; R. J. Grout and M. W.Partridge, J . Chem. SOC., 1960, 3540; D. J. Brown and B. T.England, Austral. J . Chem., 1968, 21, 2813.1976, 28, 119.benzonitrile with the cyclic imino-ethers (6; n = 5-7) ;and (b) cyclodehydration of the same nitrile with thelactams (7; n = 5-7) by use of phosphorus pentaoxide0 C " c H .o E tNHR' NHR3(3)X R' R2 R3a: CH H SH Phb: CH H H MeC : CH H H Prid: CH H H Bute: CH H Me Mef : CH Me H Meg: N H H Me0( 5 ) (6) (7)in xylene. The imine (8; X = NH, n = 9) was pre-pared only by method (b) with the lactam (7; n = 9);the imine (10; n = 5) was made by fusion of 4-amino-pyrimidine-5-carbonitrile with the cyclic imino-ether(6; n = 5); but attempts to prepare the homologousimine (10; n = 7) from the same nitrile with the imino-ether (6; n = 7) gave only an isomer (9; X = N, n = 7).In aqueous alkali, the imine (8; X = NH, n = 5)4 E.C . Taylor and R. V. Ravindranathan, J . Org. Chem.,6 H. U. Sieveking and W. Liittke, Angew. Chem.. 1969, 81,1962, 27, 2622.4321975 2183gave only the corresponding oxo-compound (8; X = 0,n = 5) because the chain of five methylene groups wasNH NHIOH(11)too short to permit the existence of a rearranged isomer(9; X = CH, n = 5) without considerable strain; thenext higher homologous imine (8; X = NH, n = 6) gavea mixture of the oxo-analogue (8; X = 0, n = 6) andthe p-bridged isomer (9; X = CH, n = 6); and thehomologues (8; X = NH, n = 7 or 9), with adequatelylong chains, gave only their respective rearrangedisomers (9; X = CH, n = 7 or 9), in high yield.ApaItfrom ammonia, no identifiable product was obtainedfrom the imine (10; n = 5) in alkali.The pK, values and U.V. spectra (Experimental section)of the above imines and their derived isomers indicatedthat the rearrangements could be followed spectrometri-cally at pH 13. Thus at 70 "C, the spectra of most of theimines changed progressively to those of their respectiveisomers, maintaining good isosbestic points for >90of each reaction. The changes in optical density provedto be first-order and rates are expressed as ti values in theTable.Rearrangement of imines at pH 13Imine ti (70 OC)/min Analyt.h/nm4.8 31535 31537 31568 295b< 2 300(8; X = NH, n = 5) c( 8 ; X = NH, n = 6) d(8; X = NH, n = 7) 185 295(8; X = NH, n = 9) 124 295(10; n = 6) c(10; n = 7) b(3b)( 3 4( 3 4(3e)( 3f)(3g)a 280 niin at 20 "C. b Fast rearrangement during attemptedpreparation. Hydrolysis only. d Rearrangement muchslower than hydrolysis.The imines (3c and d), each bearing a bulky branchedN-alkyl group, rearranged much more slowly than thelower N-methylated homologue (3b). The reason@) for* For details of Supplementary Publications see Notice toAuthors No. 7, J.C.S. Perkin I , 1974, Index issue.D.J. Brown in ' Mechanisms of Molecular Migrations,' ed.B. S. Thyagarajan, Interscience, New York, 1968, vol. 1, p. 209et seq.this could have been (a) steric hindrance to hydration ofthe 2,3-bond prior to its fission to yield the intermediate(11) and/or (b) a steric interference between the bulkygroup (R3) and the ortho-hydrogen atom (Rl) in theintermediate (11) during the 180" rotation of the amidinegroup necessary for recyclization to the rearranged pro-duct. Reason (a) was consistent with the 14-folddecrease in rearrangement rate observed between theimine (3b) and its 2-methyl derivative (3e) ; in contrast,5-methylation of the imine (3b) to give the derivative(3f) actually increased the rearrangement rate, a factapparently inconsistent with reason (b) .However,models suggested that this increase could have resultedfrom instability engendered by steric interferencebetween the imino- and the methyl group in the imine(3f). The marked effect of electron withdrawal by adoubly bonded nitrogen on the rate of Dimroth re-arrangement 6 was exemplified in the relative 4 valuesfor the imine (3b) and its 8-aza-analogue (3g).As expected from the behaviour of simple analogues,lrearrangement of the pentamethyleneimine (8; X =NH, n = 5) proved impossible because the chain was tooshort to form a stable p-bridged amine (9; X = CH,n = 5); for the same reason, rearrangement of theimine (8; X = NH, n = 6) was very slow. However,the higher homologues (8; X = NH, = 7 or 9) re-arranged satisfactorily at 70 "C with ti values of 185 and124 min, respectively.The latter figure approachedthat (ti 68 min) for the 2,3-dimethyl imine (3e), whichmight be considered akin to an imine (8; X = NH,n = a).EXPERIMENTALAnalyses were performed by the Australian NationalUniversity Analytical Services Unit. The rearrangementrates were measured at pH 13 as described previously.2Ionization constants were measured spectrometrically(analytical wavelength 285 nm) at 20 "C and 10-3~ con-centration in buffers8 of 10-ZM ionic strength; therrno-dynamic corrections were not applied. 1H N.m.r. andU.V. spectral data are available as Supplementary Public-ation No. SUP 21481 (5 pp.).*3,4-Dihydro-4-imino-3-methyZquinazoZine (3b) .-o- Amino-benzonitrile (5.9 g), triethyl orthoformate (45 ml), andacetic anhydride (5 ml) were heated under reflux for 10 min.The residue from evaporation was triturated with lightpetroleum to give crude o-(ethoxymethyleneamino) benzo-nitrile (2) which was added to ethanolic methylamine (ca30; 50 ml) a t room temperature.After 15 min, thesolution was evaporated. Trituration of the residue withlight petroleum gave the imino-3-methylquinazoZine (97 yo),m.p. 178" (from ethanol) (Found: C, 67.75; H, 5.9; N,26.2. CQHQN, requires C, 67.9; H, 5.7; N, 26.4); pK,8.19 f 0.03.3,4-Dihydro-4-irnino-3-isopropylquinazoline (3c) .-Thecrude intermediate (2), prepared on the same scale as above,was stirred in ethanolic 30 isopropylamine (55 ml) at25 "C for 15 h.Partial evaporation and filtration gave theirnino-3-iso~ropyZquinazoline (92), m.p. 123-125" (fromDetermination of IonizationConstants,' Chapman and Hall, London, 1971.A. Albert and E. P. Serjeant,8 D. D. Perrin, Austral. J . Chem., 1963, 16, 572J.C.S. Perkin Iethanol) (Found: C, 70.3; H, 7.0; N, 22.6. C11H13N3requires C, 70.6; H, 7.0; N, 22.4); PKa 8.06 0.03.3,4-Dihydro-4-imino-3-t-butylquinazoline (3d) .-The inter-mediate (2) and ethanolic t-butylamine reacted as above for3 weeks to give the t-butyl-4-irninoquinazoline (81 ), m.p.95-96" (from ethanol) (Found: C, 71.4; H, 7.6; N, 21.3.C1,Hl,N3 requires C, 71.6; H, 7.5; N, 20.9).3,4-Dihydro-4-imino-2,3-dimethylquinazoZine (3e) .-(a) o-Aminobenzonitrile (1.18 g), triethyl orthoacetate (7.5 ml),and acetic anhydride (2.5 ml) were heated under reflux for20 min.The residue from evaporation was stirred with30 ethanolic methylamine (45 ml) for 10 days a t 25 "C togive the iminodimethylquinazoline (60), m.p. 157-158'(from ethanol) (Found: C, 69.2; H, 6.4; N, 24.2. Cl,Hll-N3 requires C, 69.3; H , 6.4; N, 24.3); PKa 8.35 0.04.(b) Phosphorus pentaoxide (10 g) was added to a stirredsolution of o-aminobenzonitrile (1.2 g) and methyl N-methylacetimidate (1.1 g) in anhydrous xylene. Thesuspension was then boiled under reflux for 15 min andallowed to cool. The solid were added to stirred ice-water(500 ml), which was then made alkaline with aqueous 50potassium hydroxide and immediately extracted withchloroform. Evaporation of the extract and columnchromatography (alumina ; chloroform) gave a product(32) identical with that from (a) (mixed m.p.and spectra).3,4-Dihydro-4-imino-3-methyZpyrido2,3-dpy~imidine (3g).-2-Aminopyridine-3-carbonitrile 5 (1; X = N, Y =CH, R = H) (0.30 g), triethyl orthoformate (4.5 ml), andacetic anhydride (1 ml) was heated under reflux for 90 min.The residue from evaporation was added to ethanolic 30methylamine (3 ml). After 20 min, evaporation and tritur-ation with light petroleum gave the imanopy~idopyrimidin~(41), m.p. 243" (Found: C, 60.25; H, 4.9; N, 35.4.C8H8N4 requires C, 60.0; H, 5.0; N, 36.0).4-Alkylaminoquinazolines (4; X = CH) .-The imine(3 b) (0.50 g) and M-sodium hydroxide (50 ml) were warmedSO "C for 1 h.Evaporation of a chloroform extract gavethe crude product, which was purified by passing throughan alumina column in chloroform to give methylamino-quinazoline (94), m.p. 201" (from ethanol) (1it.,lo 196") ;pK, 6.37 f 0.06.The imine (3c) rearranged similarly 80 "C for 12 h to give4-iso~opylaminoquinazoline (4c) (91 ), m.p. 175" (Found :C, 70.6; H, 7.0; N, 22.5. C1,H1,N, requires C, 70.6; H,7.0; N, 22.4); pK, 6.39 f 0.05.The imine (3d) gave lo0 "C for 24 h 4-t-butylamino-guinazoline (4d) (93), m.p. 95-96' (Found: C, 71.4; H,7.6; N, 21.3. Cl,Hl,N3 requires C, 71.6; H, 7.5; N,The imine (3e) gave 80 "C for 6 h 2-methyl-4-methyl-aminoquinazoline (4e) (82), m.p. 134" (Found: C, 69.5;H, 6.2; N, 24.2.C1,H1,N, requires C, 69.3; H, 6.4; N,24.3) ; pKa 7.43 f 0.04; and 2,3-dimethylquinazolin-4-one (6) (5), m.p. 111" (Found: C, 69.1; H, 6.9; N, 16.1.Cl,Hl,N20 requires C, 68.95; H, 5.8; N, 16.1).2-Amino-6-methylbenzonitrile l1 (1; X = Y = CH, R =Me) (6.6 g), triethyl orthoformate (50 ml), and acetic anhy-dride (5 ml) were heated under reflux for 15 min. Theresidue from evaporation was ground with a little lightpetroleum, filtered off, and then added to methylamine(20 g) in etbanol (40 ml). After 10 rnin the solution wasevaporated. Trituration of the residue with light petroleumgave 5-methyE4-methyZaminoquinazoline (4f) (85), m.p.Q H. Bredereck, F. Effenberger, and E. Henseleit, Chew. Ber..1966, 98, 2764.2O.9Y0).178" (from ethanol) (Found: C, 68.9; H, 6.4; N, 23.9.C10HllN3 requires C, 69.3; H, 6.4; N, 24.3)4-1Methylaminopyrido2,3-dpyrimidine (4g) .-The imine(3 g) (80 mg) was warmed in M-sodium hydroxide (10 ml)at 60 "C for 30 rnin to give, as for the quinazoline (4b), themethylaminopyridopyrimidine (64y0), m.p.231" (Found : C,60.1; H, 5.05; N, 34.8. C,H,N4 requires C, 60.0; H, 5.0;6,7,8,9,10,12-Hexahyd~o-l 2-iminoazepino2,l-bquinazo-N, 35.0).line (8; X = NH, n = 5).-(a) o-Aminobenzonitrile (1.18g) and 7-ethoxy-3,4,5,6-tetrahydro-2H-azepine (6; n = 5)(1.6 g) were fused together a t 150 "C for 24 h. The cooledmixture was dissolved in the minimum quantity of ethanoland then a little hydriodic acid was added. Evaporationand trituration of the residue with ethyl acetate gave theiminoazepinoquinazoline hydriodide (86) , m.p.281"(Found: C, 45.8; H, 4.8; N, 12.1. C,,H,,IN, requires C,45.8; H, 4.7; N, 12.3).(b) Phosphorus pentaoxide (10 g) was added to a stirredmixture of o-aminobenzonitrile (1.18 g), hexane-6-lactam(7; n = 5), and anhydrous xylene (50 ml). The suspensionwas boiled under reflux for 15 min and then cooled. Thesolid w m added with stirring to icewater (500 ml) andthen made alkaline with aqueous 50 potassium hydroxide.Extraction with chloroform and evaporation of the extractgave the base (71y0), m.p. 124-125" (from ethanol) (Found:C, 72.9; H, 7.0; N, 14.4. C13H15N3 requires C, 73.2; H,7.1; N, 19.7), identical with a specimen prepared fromthe hydriodide in (a).quinazoline (8; X = NH, 'tc = 6).-(a) o-Aminobenzo-nitrile (1.18 g) and 2-ethoxy-3,4,5,6,7,8-hexahydroazocine 1(6; n = 6) (1.18 g) were heated at 190 "C for 36 h to givethe iminoazocinoquinazoliins (68), m.p. 153" (from ethanol)(Found: C, 74.1; H, 7.3; N, 18.4.Cl4H1,N3 requires C,74.0; H, 7.5; N, 18.5).(b) Cyclodehydration of o-aminobenzonitrile (1.16 g)and heptane-7-lactam (7; n = 6) (1.14 g) with phosphoruspentaoxide as above gave the same product (65) as in (a).bquinazoline (8; X = NH; n = 7).-(a) o-Aminobenzo-nitrile (1.18 g) and 9-ethoxy-3,4,5,6,7,8-hexahydro-2H-azonine 1 (6; n = 7) at 190 "C for 24 h gave the imino-azoninoquinazoline (70), m.p. 146" (from ethanol) (Found :C, 74.4; H, 8.0; N, 17.7. Cl5HI9N3 requires C, 74.65; H,(b) Cyclodehydration of o-aminobenzonitrile (1.16 g) andoctane-lactam (7; n = 7) (1.56 g) gave a product (74)identical with that from (a).undecin02,1-bquinazoline (8; X = NH, n = 9).-Cyclo-dehydration of o-aminobenzonitrile (2.36 g) and decane- 10-lactam (7; n = 9) (3.6 g) gave the iminoazacycloundecino-quinazoline (67), m.p.158" (from ethanol) (Found: C,76.1; H, 8.65; N, 15.6. Cl,H23N3 requires C, 75.8; H,8.6; N, 15.6).Action of Alkali on the Imines (8; X = NH, n = 5-7(w 9) .-The hexahydroiminoazepinoquinazoline (0.50 g)and M-potassium hydroxide (150 ml) were heated on asteam-bath for 18 h. The cooled solution was extractedwith chloroform. The solute in the extract was purified bycolumn chromatography (alumina; chloroform) to give a10 E.Hayashi, T. Higashino, and S. Tomisaki, J . Pharm. SOC.Japan, 1967, 87, 678.11 S. Gabriel and A. Thieme, Ber., 1919, 52B, 1079.6,7,8,9,10,11 -Hexahydro- 13-imino- 13H-azocino2,L-b -6,7,8,9,10,11,12,14-Octahyd~o-l4-~minoazon~no2,1-7.9; N, 17.4).6,7,8,9,10,11,12,13,14,16-Decahydro-l6-im~noazacyclo1975 2185single major product, 7,8,9,10-tetrahydrodroazepino2,1-bquinazolin-l2(6H)-one (8; X = 0, n = 5), m.p. 97"(1it.,l2 95").Similarly, the hexahydroiminoazocinoquinazoline gavestarting material (19) and two products, separatedby chromatography (alumina ; benzene-ethyl acetate).6,7,8,9,10,1 l-Hexahydroazocino2,l-bquinazoZin-13-one ( 8 ;X = 0, n = 6) (43), had m.p. 112" (Found: C, 73.6;€3, 7.1; N, 12.3. C14Hl,N20 requires C, 73.7; HI 7.1; N,12.3).The second product was 4,2-iminohexanoquinam-line (9; X = CH, n = 6) (21y0), m.p. 207" (Found: C ,73.8; H, 7.3; N, 18.5. C14H17N, requires C, 74.0; H, 7.5;N, 18.6).Similar treatment of the octahydroiminoazoninoquinazo-line in 3 : 1 aqueous-ethanolic M-sodium hydroxide gaveonly 4,I-ivninoheptanoquinazoline (9; X = CHI .n = 7)(91), m.p. 244" (from ethanol) (Found: C, 74.6; HI 7.7;N, 17.6. C15Hl,N, requires C, 74.65; H, 7.9; N, 17.4).In the same way, the decahydroiminoazacycloundecino-quinazoline gave 4,2-irninononanoquinazoline (9; X = CH ;l2 0. Meth-Cohn, H. Suschitzky, and M. E. Sutton, J . Chenz.Soc. (C), 1968, 1722.l3 J. Baddiley, B. Lythgoe, and A. R. Todd, J . Chem. SOL,1943, 386.n = 9) (86), m.p. 158" (from ethanol) (Found: C, 76.0,HI 8.7; N, 15.3. Ct7H,,N, requires C, 75.8; HI 8.6; N,15.6).pyrimido l,Z-aaze+ine (10 ; n = 5) .-4-Aminopyrimidine-5-carbonitrile (0.6 g) and 7-ethoxy-3,4,5,6-tetrahydro-2H-azepine (6; n = 5 ) (0.8 g) were heated a t 150 "C for12 h. Trituration of the cooled mixture with light petrol-eum gave the iminopyrimidopyrimidoazepine (93 yo), m.p.ca. 130" (decornp.) (Found: C, 61.3; H, 6.3. Cl1H1,N,requires C , 61.4; H, 6.1).4,2-Iminoheptanopyrimido4,5-dpyrinzidine (9 ; X = N,n = 7) .4-Aminopyrimidine-5-carbonitrile l3 ( 10.7 g) and9-ethoxy-3,4,5,6,7,8-hexahydro-2H-azonine (6; n = 7)(0.93 g) were heated together a t 100 "C for 12 h. Tritur-ation of the residue in light petroleum gave the imino-heptanopyrimidopyrirn~d~ne (91), m.p. 126" (decornp.)(Found: C, 63.8; H, 7.1. Cl,H,,N5 requires C, 64.2; H,5,7,8,9,10,1 l-Hexahydro-5-imino~y~imido4~,5~:4,5-7.070).We thank Dr. GAustralian Nationala scholar.B. Barlin for discussions and theUniversity for supporting K. I. as6/906 Received, 13th May, 1976
机译:2182 J.C.S. Perkin Ithe Dimroth 重排。PartXV1II.l 4-氨基喹唑啉和相关系统的合成和重排作者:Desmond J. Brown 和 Kazuharu lenaga,John Curtin 医学研究学院,邮政信箱 334,堪培拉市,澳大利亚 2601o- 氨基苯甲腈被原甲酸三乙酯-乙酸酐转化为其 N-乙氧基亚甲基衍生物 (2)。可进行烷基氨基分解,然后自发环化为3-烷基-3.4-二氢-4-亚氨基喹唑啉(3 ;X = CH) ;它们在碱中重新排列成 4-烷基氨基喹唑啉。相关的 3.4-二氢-4-亚氨基-2.3-聚亚甲基醌唑啉 (8 ;X = NH) 也由邻氨基苯甲腈制备,用适当的环亚氨基醚缩合或用内酰胺脱水制备;当2,3-聚亚甲基链长于5个CH单元时,在碱中发生Dimroth重排,得到异构体p桥2,N(4)-聚亚甲基-4-氨基喹唑啉(9 ;X = CH)。上述系统的氮杂类似物是通过类比路线制备的。讨论了重排率。我们最近报道了一些新的合成路线,即1,6-二氢-6-亚氨基嘧啶,带有l-烷基取代基或1,Z-聚亚甲基桥;随后的Dimroth将这种亚胺重排为6-烷基氨基嘧啶或2,N(6)-聚亚甲基-6-氨基嘧啶。这项工作现在扩展到 4-亚氨基喹唑啉 (3;X = CH) 和 (8;X = NH) 和相关系统 (3;X = N)和 (10) ;Dimroth 重排仅在 2-亚氨基喹唑啉系列中进行了短暂的研究,在 4-亚氨基喹唑啉基团中甚至更少,通过使用不令人满意的化合物,例如亚胺 (3a)。用于合成简单的3-烷基-3,4-二氢-4-亚氨基喹唑啉(3;X = CH),一种类似于用于 64 米诺嘧啶的方法被证明有效:邻氨基苯甲腈 (1;X = Y = CH, R = H) 在存在酸酐的情况下与原甲酸三乙酯稠密,得到 et hoxymet hyleneaminobenzo-nitrile (Z),其经甲基、异丙基或叔丁胺即用氨基分解,然后自发环化得到亚胺 (3b-d) ;与原乙酸三乙酯的类似反应得到2,3-二甲基亚胺(3E),但当2-氨基-6-甲基苯甲腈(1 ;X =Y = CH, R = Me)先用原甲酸三乙酯处理,然后用甲胺处理,以预期的阎(3f)的异构体(4f)为唯一产物。采用相同的一般合成方法转化2-氨基吡啶-3-甲腈(1;X = N,Y = CH,R = H)变成亚氨基吡啶嘧啶(3g)。亚胺(3e)也是通过一种新的单级路线制成的,该路线涉及邻氨基苯腈与甲基N-甲基乙酰氨基枣[MeC(:NMe)*OMe]在含五氧化二磷的二甲苯沸腾中缩合。通过在间碱中加热,简单的亚胺(3b-e 和 g)重排为各自的异构体(4b-e 和 g);在单个病例(3e)中,也发生了一些水解,以产生少量喹唑啉酮(5)。三环亚胺(8;X = NH, n = 5-7) 分别通过两种方法制成: (a) 邻氨基共聚 XVII, D.J. Brown 和 K. Ienaga, Austral. J .Chem.,D. J. Brown 和 K. Ienaga, J.C.S. Perkin I, 1974, 372.H. L. Wheeler, T. B. Johnson, and D. F. McFarland,J .美国化学 SOC., 1903, 25, 787;RJ Grout 和 MW Partridge, J .化学 SOC., 1960, 3540;D. J. Brown 和 B. T.England, Austral. J .Chem., 1968, 21, 2813.1976, 28, 119.苯甲腈与环亚氨基醚(6; n = 5-7) ;(b)使用五氧化二磷0 C“ c H .o E tNHR' NHR3(3)X R' R2 R3a: CH H SH Phb: CH H H H MeC : CH H H Prid: CH H H Bute: CH H Me Mef : CH Me H Meg: N H H Me0( 5 ) (6) (7)二甲苯。亚胺(8;X = NH, n = 9) 仅通过方法 (b) 与内酰胺 (7; n = 9) 制备;亚胺(10;n = 5)由4-氨基嘧啶-5-甲腈与环状亚氨基醚(6;n = 5)融合而成;但是尝试用亚胺基醚(6;n = 7)从相同的腈中制备同源亚胺(10;n = 7),只得到了一个异构体(9;X = N, n = 7)。在水性碱中,亚胺(8;X = NH, n = 5)4 E.C .Taylor 和 R. V. Ravindranathan, J .Org. Chem.,6 H. U. Sieveking 和 W. Liittke, Angew.化学。。1969, 81,1962, 27, 2622.4321975 2183 只给出了相应的氧代化合物 (8;X = 0,n = 5),因为五个亚甲基的链太短,不允许存在重排异构体(9;X = CH, n = 5) 没有相当大的应变;下一个更高的同源亚胺(8;X = NH, n = 6) 给出氧基类似物 (8;X = 0, n = 6) 和 p 桥异构体 (9;X = CH, n = 6);和同源物(8;X = NH, n = 7 或 9),具有足够长的链,仅给出它们各自的重排二构体 (9;X = CH, n = 7 或 9),产量高。ApaIt从氨中,没有从碱中的亚胺(10;n = 5)中获得可识别的产物。上述亚胺及其衍生异构体的pK、值和紫外线光谱(实验部分)表明,在pH 13下,可以进行光谱三重排。因此,在70“C时,大多数亚胺的光谱逐渐改变为它们的相对异构体的光谱,在每个反应的>90%中保持良好的异泡点。光密度的变化被证明是一阶的,速率在表中表示为ti值.pH 13Imine ti(70 OC)/min下亚胺的重排 Analyt.h/nm4.8 31535 31537 31568 295b< 2 300(8;X = NH, n = 5) c( 8 ;X = NH, n = 6) d(8;X = NH, n = 7) 185 295(8;X = NH, n = 9) 124 295(10; n = 6) c(10; n = 7) b(3b)( 3 4( 3 4(3e)( 3f)(3g)a 280 niin at 20 “C. b 尝试准备期间的快速重排。仅水解。d 重排比水解慢得多。亚胺(3c 和 d)均带有一个大块的支链 N-烷基,重排速度比低级 N-甲基化同系物 (3b) 慢得多。reason@) for* 有关补充出版物的详细信息,请参阅Notice toAuthors No. 7, J.C.S. Perkin I , 1974, Index issue.D.J. Brown in ' Mechanisms of Molecular Migrations,' ed.B. S. Thyagarajan, Interscience, New York, 1968, vol. 1, p. 209et seq.这可能是 (a) 在裂变产生中间体 (11) 之前对 2,3-键水合的空间位位阻塞,和/或 (b) 大团 (R3) 和邻氢原子 (Rl) 之间的空间干涉中间体 (11) 在 180“ 旋转期间,脒基团需要回收到重新排列的导管。原因 (a) 与观察到的亚胺 (3b) 及其 2-甲基衍生物 (3e) 之间的重排率降低 14 倍一致;相反,亚胺(3b)的5-甲基化得到衍生物(3f)实际上增加了重排率,这一事实显然与(b)的原因不一致。然而,模型表明,这种增加可能是由于亚胺(3f)中亚氨基和&甲基之间的空间干扰引起的不稳定性。原子键合氮的电子撤回对 Dimroth 重排 6 速率的显着影响体现在亚胺 (3b) 及其 8-氮杂类似物 (3g) 的相对 4 值中。正如从简单类似物的行为所预期的那样,五亚甲基亚胺(8;X =NH, n = 5) 被证明是不可能的,因为链太短而无法形成稳定的 p 桥胺 (9;X = CH,n = 5);出于同样的原因,茶亚胺(8;X = NH, n = 6) 非常慢。然而,高等同系物(8;X = NH, = 7 或 9) 在 70 “C 时令人满意地重新排列,ti 值分别为 185 和 124 min。后一个数字接近 2,3-二甲基亚胺 (3e) 的 (ti 68 min),这可能被认为类似于亚胺 (8;X = NH,n = a)。实验分析由澳大利亚国立大学分析服务部门进行。如前所述,在pH 13下测量重排速率.2电离常数在20“C和10-3~浓缩在离子强度为10-ZM的缓冲液8中光谱法(分析波长285 nm);未应用therrno动态校正。1H N.M.R. 和 U.V.光谱数据可作为补充公告编号提供。SUP 21481(5 页)。*3,4-二氢-4-亚氨基-3-甲基ZquinazoZine (3b) .-o-氨基苯甲腈(5.9g)、原甲酸三乙酯(45ml)和乙酸酐(5ml)在回流下加热10分钟。蒸发残留物用轻质石油研磨,得到粗的邻(乙氧基亚甲基氨基)苯腈(2),将其加入到乙醇甲胺(ca30%;50ml)室温中。15分钟后,将溶液蒸发。用轻石油研磨残留物得到亚氨基-3-甲基喹唑嗪(97 年),熔点178“(来自乙醇)(发现:C,67.75;H,5.9;N,26.2。CQHQN,要求 C,67.9;H,5.7;N,26.4%);pK,8.19 f 0.03.3,4-二氢-4-伊尔尼基-3-异丙基喹唑啉 (3c) .-粗中间体 (2),以与上述相同的规模制备,在乙醇 30% 异丙胺 (55 ml) 中搅拌 25 “C 15 小时.部分蒸发和过滤得到他们的镍-3-异~ropyZquinazoline (92%), m.p. 123-125” (来自电离常数的测定,' Chapman and Hall, London, 1971.A. Albert and E. P. Serjeant,8 D. D. Perrin, 澳大利亚 J .Chem., 1963, 16, 572J.C.S. Perkin Iethanol) (Found: C, 70.3;H,7.0;N,22.6。C11H13N3需要C,70.6;H,7.0;N,22.4%);PKa 8.06 & 0.03.3,4-二氢-4-亚氨基-3-叔丁基喹唑啉 (3d) .-中间体 (2) 和乙醇叔丁胺如上反应 3 周,得到叔丁基-4-irninoquinazoline (81%),m.p.95-96“ (来自乙醇) (发现:C, 71.4;H,7.6;N, 21.3.C1,Hl,N3 需要 C, 71.6;H,7.5;N, 20.9%).3,4-二氢-4-亚氨基-2,3-二甲基喹唑嗪(3e).-(a)邻氨基苯甲腈(1.18 g)、原乙酸三乙酯(7.5 ml)和乙酸酐(2.5 ml)回流加热20 min。蒸发残留物用30%乙醇甲胺(45ml)搅拌10天,一吨25“C,得到亚氨基二甲基喹唑啉(60%),熔点157-158'(来自乙醇)(发现:C,69.2;H,6.4;N,24.2。Cl,Hll-N3 需要 C, 69.3;H,6.4;N,24.3%);PKa 8.35 和 0.04。(b)将五氧化二磷(10克)加入到邻氨基苯腈(1.2克)和N-甲基乙酰亚胺甲酯(1.1克)的无水二甲苯搅拌溶液中。然后将悬浮液在回流下煮沸 15 分钟并冷却。将固体加入搅拌的冰水(500毫升)中,然后用50%氢氧化钾水溶液制成碱性,并立即用氯仿萃取。蒸发提取物和柱层析(氧化铝;氯仿)得到的产物(32%)与(a)(混合m.p.和光谱)相同.3,4-二氢-4-亚氨基-3-甲基Zpyrido[2,3-d]py~imidine (3g).2-氨基吡啶-3-甲腈5(1;X = N,Y = CH,R = H)(0.30g),原甲酸三乙酯(4.5ml)和乙酸酐(1ml)在回流下加热90分钟。将蒸发残留物加入到30%甲胺乙醇(3ml)中。20 min后,用轻质石油蒸发研磨,得到无菌~idopyrimidin~(41%),熔点243“(发现:C,60.25;H,4.9;N, 35.4.C8H8N4 需要 C, 60.0;H,5.0;N, 36.0%).4-烷基氨基喹唑啉(4;X = CH) .-将亚胺(3 b)(0.50g)和M-氢氧化钠(50 ml)加热[SO “C 1 h]。氯仿提取物蒸发得到粗产物,粗产物通过氯仿中的氧化铝柱提纯,得到&甲基氨基喹唑啉(94%),熔点201“(来自乙醇)(1it.,lo 196”);p K,6.37 f 0.06.亚胺(3c)类似地重排[80“C,12 h],得到4-异~奥吡氨基喹唑啉(4c)(91%),熔点175”(发现:C,70.6;H, 7.0;N,22.5。C1,H1,N,要求C,70.6;H,7.0;N,22.4%);pK, 6.39 f 0.05.亚胺 (3d) 得到 [lo0“C 24 h] 4-叔丁基氨基吉那唑啉 (4d) (93%), m.p. 95-96' (Found: C, 71.4;H,7.6;N,21.3。Cl,Hl,N3 需要 C, 71.6;H,7.5;N,亚胺(3e)得到[80“C,6小时]2-甲基-4-甲基氨基喹唑啉(4e)(82%),熔点134”(发现:C,69.5;H,6.2;N, 24.2.C1,H1,N, 需要 C, 69.3;H,6.4;N,24.3%) ;酸度系数(pKa) 7.43 f 0.04;和 2,3-二甲基喹唑啉-4-酮 (6) (5%), m.p. 111“ (Found: C, 69.1;H,6.9;N, 16.1.Cl,Hl,N20 需要 C, 68.95;H,5.8;N, 16.1%).2-氨基-6-甲基苯甲腈 l1 (1;X = Y = CH,R = Me)(6.6g),原甲酸三乙酯(50ml)和乙酸脱氢(5ml)在回流下加热15分钟。将蒸发产生的特蕾西用少许轻质石油研磨,滤去,然后加入甲胺(20g)中的etbanol(40ml)中。10 rnin后,溶液蒸发。用轻石油研磨残渣给予 5-甲基E4-甲基氨基喹唑啉 (4f) (85%), m.p.Q H. Bredereck, F. Effenberger, and E. Henseleit, Chew.误码率。。1966, 98, 2764.2O.9Y0).178“ (来自乙醇) (发现: C, 68.9;H,6.4;N, 23.9.C10HllN3 需要 C, 69.3;H,6.4;N, 24.3%)4-1甲氨基吡啶并[2,3-d]嘧啶(4g).-亚胺(3g)(80mg)在60“C下在M-氢氧化钠(10ml)中加热30rnin得到,至于喹唑啉(4b),乙氨基吡啶嘧啶(64y0),m.p.231”(发现:C,60.1;H,5.05;N,34.8。C,H,N4 需要 C,60.0;H, 5.0;6,7,8,9,10,12-六羟基~o-l 2-亚氨基氮杂卓并[2,l-b]喹唑-N, 35.0%).line (8;X = NH, n = 5).-(a) 邻氨基苯甲腈 (1.18g) 和 7-乙氧基-3,4,5,6-四氢-2H-氮杂卓 (6; n = 5)(1.6 g) 在 t 150“C 下熔合在一起 24 h.将冷却后的混合物溶解在极少量的乙醇中,然后加入少许氢碘酸。残留物用乙酸乙酯蒸发研磨得到亚氨基氮杂卓喹唑啉氢碘化物(86%),m.p.281“(发现:C,45.8;H,4.8;N,12.1。C,,H,,IN,需要 C,45.8;H,4.7;N,12.3%)。(b)将五氧化二磷(10g)加入到邻氨基苯腈(1.18g)、己烷-6-内酰胺(7;n = 5)和无水二甲苯(50ml)的搅拌混合物中。将悬浮液在回流下煮沸15分钟,然后冷却。将固体 w m 搅拌加入冰水(500 ml)中,然后用 50% 氢氧化钾水溶液制成碱性。用氯仿萃取并蒸发提取物得到碱(71y0),熔点124-125“(来自乙醇)(Found:C,72.9;H,7.0;N,14.4。C13H15N3 要求 C,73.2;H,7.1;N,19.7%),与(a).喹唑啉中由氢碘化物制备的标本相同(8;X = NH, 'tc = 6).-(a) 邻氨基苯并腈 (1.18 g) 和 2-乙氧基-3,4,5,6,7,8-六氢偶氮辛 1(6; n = 6) (1.18 g) 在 190“C 下加热 36 小时,得到亚氨基偶氮腈啉 (68%),m.p. 153”(来自乙醇)(发现:C,74.1;H,7.3;N, 18.4.Cl4H1,N3 需要 C,74.0;H,7.5;N,18.5%)。(b) 邻氨基苯甲腈(1.16 g)和庚烷-7-内酰胺(7;n = 6)(1.14 g)与上述五氧化二磷得到与(a)相同的产物(65%)。X = NH;n = 7).-(a) 邻氨基苯并腈 (1.18 g) 和 9-乙氧基-3,4,5,6,7,8-六氢-2H-氮杂碱 1 (6; n = 7) 在 190 “C 24 小时时得到亚氨基-偶氮基喹唑啉 (70%),熔点 146”(来自乙醇)(发现:C,74.4;H,8.0;N,17.7。Cl5HI9N3 需要 C, 74.65;H,(b)邻氨基苯腈(1.16g)和辛烷-&内酰胺(7;n=7)(1.56g)的环脱水得到的产物(74%)与(a)相同。X = NH, n = 9).-邻氨基苯甲腈 (2.36 g) 和癸烷-10-内酰胺 (7; n = 9) (3.6 g) 的环脱水得到亚氨基氮杂环十一烷基喹唑啉 (67%), m.p.158“ (来自乙醇) (发现: C,76.1;H,8.65;N,15.6。Cl,H23N3 需要 C, 75.8;H,8.6;N,15.6%)。碱对亚胺的作用(8;X = NH, n = 5-7(w 9) .-将六氢亚氨基氮杂卓喹唑啉(0.50g)和M-氢氧化钾(150ml)在蒸汽浴上加热18 h。冷却后的溶液用氯仿萃取。提取物中的溶质通过柱层析(氧化铝;氯仿)纯化,得到 a10 E.Hayashi, T. Higashino, and S. Tomisaki, J .药学SOC。日本, 1967, 87, 678.11 S. Gabriel and A. Thieme, Ber., 1919, 52B, 1079.6,7,8,9,10,11 -六氢-13-亚氨基-13H-偶氮基[2,L-b] -6,7,8,9,10,11,12,14-八氢~o-l4-~minoazon~no[2,1-7.9;N,17.4%)。6,7,8,9,10,11,12,13,14,16-十氢-l6-im~野氮杂环1975 2185单 主要产品,7,8,9,10-四氢氢氮杂卓并[2,1-b]喹唑啉-l2(6H)-酮 (8;X = 0, n = 5), m.p. 97“(1it.,l2 95”)。类似地,将六氢亚氨基偶氮喹唑啉得到原料(19%)和两种产物,通过色谱法分离(氧化铝;苯乙酸乙酯).6,7,8,9,10,1 l-六氢偶氮并[2,l-b]喹唑锌-13-酮(8;X = 0, n = 6) (43%), m.p. 112“ (发现: C, 73.6;€3, 7.1;N,12.3。C14Hl,N20 需要 C,73.7;嗨 7.1;N,12.3%)。第二种产品是4,2-亚氨基己基喹南系(9;X = CH, n = 6) (21y0), m.p. 207“ (发现: C ,73.8;H,7.3;N,18.5。C14H17N,要求 C,74.0;H,7.5;N,18.6%)。与8氢亚氨基氮杂氮杂喹唑啉喹唑啉类3:1水溶液乙醇间氢氧化钠的类似处理仅给予4,I-ivninoheptanoquinazoline(9;X = CHI .n = 7)(91%), m.p. 244“ (来自乙醇) (发现: C, 74.6;嗨 7.7;N,17.6。C15Hl,N,需要C,74.65;H,7.9;N,17.4%)。以同样的方式,十氢亚氨基氮杂环十一烷基喹唑啉得到4,2-irninononanoquinazoline(9;X = CH ;l2 0.Meth-Cohn、H. Suschitzky 和 ME Sutton, J .Chenz.Soc. (C), 1968, 1722.l3 J. Baddiley, B. Lythgoe, and A. R. Todd, J .Chem. SOL,1943, 386.n = 9) (86%), m.p. 158“ (from ethanol) (Found: C, 76.0,HI 8.7;N,15.3。Ct7H,,N,需要C,75.8;嗨 8.6;N,15.6%).嘧啶并[l,Z-a]氮杂卓+ine (10 ; n = 5) .-4-氨基嘧啶-5-甲腈 (0.6 g) 和 7-乙氧基-3,4,5,6-四氢-2H-氮杂卓 (6; n = 5) (0.8 g) 在 t 150“C 下加热 12 h。将冷却的混合物与轻质汽油-eum研磨,得到亚氨基嘧啶吡啶氮氮杂卓(93岁),m.p.ca。130“ (去角锥)(发现:C,61.3;H,6.3。Cl1H1,N,需要C,61.4;H, 6.1%).4,2-亚氨基庚嘧啶并[4,5-d]吡嗪 (9 ;X = n,n = 7) .4-氨基嘧啶-5-甲腈 l3 ( 10.7 g) 和 9-乙氧基-3,4,5,6,7,8-六氢-2H-氮杂碱 (6; n = 7)(0.93 g) 一起在 t 100“C 下加热 12 h。残渣在轻质石油中的劈磨得到亚氨基-庚基嘧啶吡啶~d~ne(91%),熔点126“(decornp.)(发现:C,63.8;H,7.1。Cl,H,,N5 需要 C, 64.2;H,5,7,8,9,10,1 l-六氢-5-亚氨基~y~亚胺基[4~,5~:4,5]-7.070)。我们感谢 GAustralian Nationala scholar.B. Barlin 博士的讨论,感谢大学对 K. I. as 的支持[6/906 收稿日期,1976 年 5 月 13 日

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号