首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Synthesis of novel organic nitrate esters: guanylate cyclase activation and tissue relaxation
【24h】

Synthesis of novel organic nitrate esters: guanylate cyclase activation and tissue relaxation

机译:新型有机硝酸酯的合成:鸟苷酸环化酶活化与组织松弛

获取原文
获取外文期刊封面目录资料

摘要

WZSynthesis of novel organic nitrate esters: guanylate cyclase n7iE mzactivation and tissue relaxation zos Kexin Yangt Jennifer D. Artz; Jodi Lock,"Cristina Sanchez,' Brian M. Bennett,b Amy B. Fraser and Gregory R. J. Thatcher *,* a Department of Chemistry, Queen's University, Kingston, Ontario, Canada K7L 3N6 Department of' Pharmacology and Toxicology, Queen 's University, Kingston, Ontario, Canada K7L 3N6 The syntheses of four novel sulfur-containing nitrate esters are reported, together with data for guanylyl cyclase activation and tissue relaxation. We report the synthesis of four novel nitrate esters bearing a sulfur atom p to a nitrate group (14). These compounds are designed to function as nitrovasodilators and nitric oxide prodrugs based upon the mechanism of action of glyceryl trinitrate (GTN, nitroglycerin). Preliminary data on activation of soluble guanylate cyclase and tissue relaxation suggest that these compounds may represent a novel class of nitrate esters of potential therapeutic significance.GTN has been in use since 1879 in the treatment of angina pectoris,' and is widely believed to exert its therapeutic effect through in uivo release of nitric oxide (*NO),2 which itself has been identified as Endothelium Derived Relaxing Factor (EDRF).' A small number of simple organic nitrates in addition to GTN (e.g. isosorbide dinitrate) are effective and clinically important vasodilators. 6+7 Development of *KO prodrugs is the subject of substantial interest, stimulated by recent evidence suggesting many varied biological roles for NO, extending beyond vasodilation to immune function and neurotransmission.5,8-1 Design and synthesis of novel nitrate esters may thus lead to new *NOprodrugs and nitrovasodilators that circumvent tolerance. ' A substantial body of evidence supports the hypothesis that the vasodilatory activity of organic nitrates is largely the result of activation of guanylate cyclase (GCase) leading to vascular smooth muscle rela~ation.~ 7*13*14 GTN must undergo bio- transformation in uivo and it is proposed that tolerance development may be associated with this need for biotransform- ation, the exact mechanism of which remains unresolved.6 Proposed sulf hydryl-dependent pathways include enzymic and non-enzymic biotransformation by a thiol.' Indeed, the non-enzymic interaction of GTN with a limited range of thiols such as cysteine, N-acetylcysteine and thiosalicylic acid leads to activation of GCase with an EC50 in the submillimolar range in uitro.t Regardless of the exact mechanism of biotransformation of GTN in uiuo, it may be postulated that if thiol functionalities are incorporated into the structure of nitrate esters, such molecules have the potential to activate GCase and release -NO without reliance on GTN biotransformation pathways. We have chosen to synthesize nitrate esters containing masked thiol groups as progenitors of such mercaptoalkyl nitrates and potential -NOprodrugs. Three glycerol dinitrate derivatives, 1.2 and 5, were chosen as target molecules. Synthetic difficulties in synthesis of 1-However, .NO release was not detected from GTN with nitrate and thiol concentrations of up to 25 and 100 mmol-',respectively employing a Clark-type .NO-selective electrode. Questions remain as to the function of GTN as an .NO pr~drug.~ 7 LOH LOH LOH Scheme 1 polynitrate esters result from: (i) incomplete nitration with all nitration procedures except highly acidic and oxidizing nitrate- sulfuric acid biphasic mixtures, 's and (ii) the greatly attentuated reactivity towards S,2 substitution of @-nitro- substituted carbon. For example, the thioester 5 could not be synthesized by reaction of 1-haloglycerol-2,3-dinitratewith thioacetate ion under a variety of conditions and in the presence of crown ethers, although the mononitrate 6 was synthesized in this way, in good yield.A route to the disulfide 1 was selected via the Bunte salt, 2 (Scheme 1). Synthesis of 2 proceeded from 3-bromopropane- 1,2-diol (90 mmol) with nitration by dropwise addition into a cold mixture of nitric acid (68-70, 4.0 equiv.) and sulfuric acid (95, 4.0 equiv.) in CH2CI2(50 ml). After further reaction at room temp. for 30 min., the organic layer was separated, washed, dried and concentrated to yield a yellow oil, purified by silica gel flash chromatography to give 3-bromopropane- 1,2-diol dinitrate 7 in 45 yield. The Bunte salt 2 was produced in 65 yield from the dinitrate, by reaction with an equimolar portion of Na2S,0, in 3 :1 MeOH-H,O at 50 "C for 10 h and subsequent purification by silica gel flash chromatography.Oxidation of 2 with a small molar excess of H202 (30) in EtOH-H,O (1 :1) proceeded for 2 days with a catalytic amount of H,SO,. Extraction with CH2C1, and concentration gave the J. Chem. Soc., Perkin Trans. I, 1996 1073 Table 1 Melting point, NMR, IR and mass spectral characteristics of nitrates 1-4" Compd. MP/OC UPPm) MPPm) v,,,/cm-'f m/z (fragment, )d Liquid 5.43-5.55 (2 H, m) 77.08/77.00 1634, 1270, 429 (M + C1, loo), 1 4.84-4.93 (2 H, m) 69.33169.29 1042,995, 393 (M -1, 10) 4.60-4.69 (2 H, dd, J 6, 13) 37.05136.89 855 2.97-3.16 (4 H, m) 2 86 (dec.) 5.75-5.80 (1 H, m) 79.02 1638, 1449, 323 (M + Na, 53) 4.99-5.07 (1 H, dd, J 3,6) 70.97 1378,1351, 4.774.86 (1 H, dd, J 6, 13) 32.04 1290, 1210, 3.20-3.23 (2 H, d, J 7) 1042,654 65-66 5.80-5.87 (1 H, m) 76.95 1651, 1344, 218 (M + C1, 100) 3 4.674.75 (I H, dd, J 5, 11) 69.88 1286, 1139, 4.504.57 (1 H, dd, J 2, 11) 48.66 937 3.69-3.80 (1 H, dd, J 8, 15) 3.35-3.44 (1 H, dd; J 3, 15) 64-65 5.84-5.90 (I H, m) 80.49 1649, 1339, 202(M + C1, 100)4 4.98-5.06 (1 H, dd, J 4, 12) 75.07 1287, 1122, 4.774.83 (1 H, d, J 12) 64.04 926 3.50-3.58 (I H, dd, J 2, 15) 3.31-3.42 (1 H, dd, J7, 15) 'All compounds were characterized by elemental analysis or high resolution mass spectrometry, HPLC and NMR analysis for homogeneity.CDCl, as solvent, except for 2 (CD,),SO. J Values in Hz. 'Run as KBr discs, except 1 which was run as a neat film.All run as chemical ionization (CI, CI-) except 2 (ES', Na). Table 2 Summary of guanylyl cyslase activation dose-response curves for nitrates 2 4in the presence and absence of thiols (2 mmol 1-') relative to GTN + 2 mmol 1F' cysteine' GTN + cys 2 (no thiol) 2 + cys 2 + DTT 3 + cys 4 + cys 4 + DTT Maximal responseb 100 (5) 105 (12) 293 (15) 164 (23) 1087 (200) 98 (16) 174 (30) Concentration at max. response (mmol l-') I .O 0.5 5.0 5.0 1.0 5.0 1.5 GTN equivalence concentration (mmol 1~')~ 1.o 0.4 0.7 2.0 0.1 5.0 0.8 " Average of 46 experiments using 2-3 separate preparations. Various nitrates gave no response above basal concentrations: GTN, GTN + DTT, 1, 3,3 + DTT, 4, glycerol-1,2-dinitrate + cysteine.Response to 1(+DTT or cys) was discernible but <20. Several responses do not plateau, thus EC,, values cannot be quoted. Maximal response to GTN + cys ranged from 360-540 pmol min-' mg-' in separate experiments and was set at 100. Other responses relative to maximal GTN + cys response are expressed as percentages with standard errors. Nitrate concentration at which maximal response is observed: concentrations did not exceed 5 mmol 1-' (1 mmol I-for 3). Nitrate concentration at which response reaches maximal response to GTN + cysteine (ie.100). tetranitrate 1 in 47 yield after purification by silica gel flash a 4-phenyl-substituted sultine, whilst only one isomer of 4 was chromatography. The 3CNMR spectra of 1 and 2 reveal 6 and isolated.20 3 signals, respectively, as expected from the presence of two Activation of soluble GCase by nitrates 1-6 was assayed chiral centres in 1 and only one in 2 (Table 1).The 'H NMR employing the radioimmunoassay method.§ Dose-response spectra of glycerol dinitrate derivatives (1, 2 and 7) are of curves were obtained for GCase activation by nitrates 14 and interest because of the large geminal coupling at the nitrated GTN in the presence and absence of cysteine and dithiothreitol methylene and small or unobservable geminal coupling at the (DTT; both 2 mmol I-'). The data from these curves are other methylene position (Table I)." summarized in Table 2, which gives: (i) concentrations of It was anticipated that simple nitration of bis(2,3-dihydroxy-nitrates required to give a response equivalent to the maximal propyl) disulfide 8 would result in sulfur oxidation and poor response seen for GTN + cysteine, and (ii) the maximal yields of 1, owing to the highly oxidizing conditions of the response measured for each nitrate.The GCase assay data medium. However, this alternative route was explored, using shows that dinitrate 2 activates GCase, with a submillimolar similar oxidation conditions to those employed above. Only EC50, in the absence of any added thiol, in contrast to GTN small quantities of two organic nitrate-containing products which requires added cysteine. Compounds 2 and 4 also were isolated from the organic layer of the biphasic nitrate activate GCase in the presence of DTT in contrast to GTN.medium. On chromatographic purification of 3 and 4 on silica Furthermore, nitrates 2 and 3 are seen to produce substantially gel, in yields of 5 and lo, respectively, it was revealed that elevated responses relative to GTN. The activity of the neither was the tetranitrate 1. NMR spectra obtained for these tetranitrate 1 is very low and entirely equivalent to glycerol-l,2-products are highly solvent-dependent and are similar to those dinitrate in this assay. No activation of GCase by glycerol of the glycerol dinitrates, but with the significant difference that mononitrates (at <5 mmol IF') is observed in this assay. the large geminal coupling is associated with the upfield rather than the downfield methylene protons (Table l).I9 Definitive structure identification rested upon mass spectral data: soft $ Several alternative cyclizations may be drawn including, most chemical ionization with C1-ion capture determined 3 and 4 reasonably, intramolecular attack of the C-1 primary alcohol on sulfonyl or sulfinyl S with thiol displacement leading to 3 and 4to be the sultone and sultine, respectively. A simple cyclization respectively.in the nitration medium is likely (Scheme I).$ Durst and 5 Partially purified enzyme was freshly prepared from rat aorta co-workers have previously isolated both diastereoisomers of homogenates. See ref.21 for full experimental details. 1074 J. Chem. SOC.,Perkin Trans. I, I996 In order to extend thc GCase data, the relaxing effects of nitrates 2, 3 and 4 on rat aortic tissue were examined.7 Compared to the control experiments, in this intact tissue assay, all three nitrates were observed to cause significant tissue relaxation.The EC50 values for 2, 3 and 4 were 3.94, 3.37 and 9.06 pmol 1 respectively. In similar rat aorta relaxation assays, a nitrosothiol (Bu'SNO) and GTN itself were seen to give EC,, values of 5 pmol 1 and 8.3 nmol 1 respectively.22 Three of the four sulfur-containing nitrates reported herein, two mononitrates (3, 4) and one dinitrate (2), are shown to activate GCase at a higher maximal level than GTN. In addition, compound 2 does not require added thiol for activation. The significant relaxing effects of 2, 3 and 4 on rat aortic tissue are compatible with the GCase activation data.The positioning of the sulfur atom p to the nitrate group allows intramolecular reaction of S with the nitrate N via a five- membered ring.23 This design is founded upon a biotransform-ation theory for GTN in which the intermolecular reaction with cysteine results in formation of a cysteinyl thionitrate which may release *NOor activate GCase directly. 3,13*25 Mechanistic studies are required to determine if the pathways for GCase activation by compounds 14 involve such intramolecular activation. However, the potential for development of novel nitrate esters, including mono- and di-nitrates, with activity significantly different from glyceryl trinitrate itself is clearly demonstrated.11 Acknowledgements The financial support of the Heart Stroke Foundation of Ontario, Grant #A2259 and the initial involvement of Dr Ralph Whitney are gratefully acknowledged. 1 Thoracic aortic strips were prepared from male Sprague-Dawlcy rats (Charles-River, Canada) as described in ref.22. Tissues were contracted submaximally with phenylephrine (0.1 pmol I-') and exposed to various concentrations of nitrovasodilator to obtain concentration-response curvcs. 11 Two mononitrates which incorporate cysteinyl residues have been reported, however, (i) the S-N spacing does not allow rapid intramolecular reaction via a small ring (<6 atoms), and (ii) control compounds without S performed in a comparable fashion to the cysteinyl derivative^.'^ References 1 J.Abrams, Am. J. Cardiol., 1992, 70, 30B. 2 R. A, Yeates, Ar-neiin.-~orsch.lDrug Research, 1992,42, 1314; G. S. Marks, Cun. J. Physiol. Pharmacol., 1992, 65, 11 1 I; L. J. Ignarro, H. Lippton, J. C. Edwards, W. H. Raricos, A. L. Hyman, P. J. Kadowitz and C. A. Grueter, J. Phurmacol. Exp. Ther., 1981, 218, 739. 3 S. Katsuki, W. P. Arnold and F. Murad, J. Cvclic Nucl. Res., 1977,3, 239. 4 G. S. Marks, B. E. McLaughlin, S. L. Jimmo, M. Poklewska- Koziell, J. J. Brien and K. Nakatsu, Drug. Metah. Dispos., 1995, 23, 1248. 5 S. Moncada, R. M. J. Palmer and A. G. Ferrige, Nature (I,ondon), 1987, 327, 524; S. Moncada, R. M. J. Palmer and E. A. Higgs, Pharmacol. Rev., 1991, 43, 109. 6 B. M. Bennett, B. J. McDonald, R.Nigam and W. C.Simon, Trends Pharmucol. Sci., 1994, 15, 245. 7 W. R. Kukovetz and S. Holzmann, Eur. J. Clin. Pharmacol., 1990, 38, S9. 8 A. R. Butler, F. W. Flitney and D. L. H. Williams, Trends Phurmacol. Sci., 1995, 16, 18; S. C. Askew, A. R. Butler, F. W. Flitney, G. D. Kemp and I. L. Megson, Bioorg. Med. Chem., 1995, 3, I. 9 N. N. Belushkina, N. B. Grigoryev and I. S. Severina, Biochemisfry (Moscow), 1994, 59, 1257. 10 D. Morley and L. K. Keefer, J. Curcliovusc. Phurmacol.,1993, 22 S7, s3. 11 M. Feelisch, M. tePoel, R. Zamora, A. Deussen and S. Moncada, Nature (London),1994,43, 109. 12 M. G. Rogaert, J. Cardiovasc. Pharmacol., 1991, 17 S3, S309; U. Elkayam, A. Mehra, A. Shotan, E. Ostrzega, Am. J. Cardiol., 1992,70,98B.13 M. Feelisch, J. Crwdiovasc. Pharmucol., 199 1, 17, S25. 14 H.-L. Fung and S.-J. Chung, Biochenz. Pharmcicol., 1993,45, 157. 15 H.-L. Fung and S. Chong, Biochem. Plzarmacol., 1991, 42, 1433; M. A. Kurz, T. D. Boycr, R. Whalen, T. E. Peterson and D. G. Harrison, Siochem. J., 1933, 292, 545. 16 M. Feelisch and E. Noack, Eur. J. Pharmacol., 1987,142,465. 17 R. A. Yeates, M. Schmid and M. Lcitold, Biochem. Pharmacd., 1989,38, 1749. 18 T. Urbanski, Chemistry Technology of Explosives, vol. 2, Pergamon, Oxford, 1965; C. D. Marken, C. E. Kristofferson, M. M. Roland, A. P. Manzara and M. W. Barnes, Synlhesis, 1977, 484. 19 F. Buckell, J. A. Hartry, U. Rajalingam, B. M. Bennett, R. A. Whitney and G. R. J. Thatcher, J. Chem. Soc., Perkin Trans. 2, 1994, 401. 20 N. K. Sharma, F. deRenach-Hirtzbach and T. Durst, Gin. J. Chem., 1976,54,3012. 21 R. M. Bennett, B. J. McDonald, R. Nigam, P. G. Long and W. C. Simon, Can. J. Physiol. Phurmcicd., 1992, 70, 1297. 22 J. J. McGuire, D. J. Anderson and B. M. Bennett, J. Pharmacnl. E.p. Ther., 1994, 271, 708; D. H. Stcwart, D. L. Hayward and R. M. Bennett, Cm J. Physiol. Pharmacol., 1989, 67, 1403. 23 A. J. Kirby, Ah. Phys. Org. Chem., 1980, 17, 183. 24 J. Zanzinger, M. Feelisch and E. Bassenge, J. Curc1iova.r~. Pharmacol., 1994, 23, 772. 2s D. R. Cameron, A. M. P. Borrago, B. M. Bennett and G. R. J. Thatcher, Ciin. J. Chem., 1995, 1267; J. D. Artz, K. Yang, C. Sanchez, B. M. Bennett and G. R. J. Thatcher, Chem. Commun., 1996,927. Paper 6/02080A Received 25th Murch 1996 Accepted 2nd April 1996 J. Chem. SOC.,Perkin Trans. 1, 1996 1075
机译:WZ新型有机硝酸酯的应用:鸟苷酸环化酶n7iE、mz活化和组织松弛、zos 杨可欣、Jennifer D. Artz;Jodi Lock,“Cristina Sanchez,”Brian M. Bennett,b Amy B. Fraser 和 Gregory R. J. Thatcher *,* a 加拿大安大略省金斯敦皇后大学化学系 K7L 3N6 加拿大安大略省金斯敦皇后大学药理学和毒理学系 K7L 3N6 报道了四种新型含硫硝酸酯的合成,以及鸟苷酸环化酶活化和组织松弛的数据。我们报道了四种新型硝酸酯的合成,这些酯带有硝酸基团的硫原子 p (14)。这些化合物被设计为基于硝基三硝酸甘油酯(GTN,硝酸甘油)的作用机制作为硝基血管扩张剂和一氧化氮前药。关于可溶性鸟苷酸环化酶活化和组织松弛的初步数据表明,这些化合物可能代表了一类具有潜在治疗意义的新型硝酸酯。自 1879 年以来,GTN 一直用于治疗心绞痛,“人们普遍认为它通过在 uivo 中释放一氧化氮 (*NO) 2 来发挥其治疗效果,一氧化氮本身已被确定为内皮衍生的松弛因子 (EDRF)。除GTN外,少量简单的有机硝酸盐(例如硝酸异山梨酯)是有效且具有临床意义的血管扩张剂。6+7 *KO前药的开发是人们非常感兴趣的主题,最近的证据表明NO具有许多不同的生物学作用,从血管舒张延伸到免疫功能和神经传递.5,8-1因此,新型硝酸酯的设计和合成可能导致新的*NOpro药物和硝基血管扩张剂规避耐受性。' 大量证据支持以下假设:有机硝酸盐的血管舒张活性主要是鸟苷酸环化酶 (GCase) 激活导致血管平滑肌相关~化的结果.~ 7*13*14 GTN 必须在 uivo 中经历生物转化,并提出耐受性的发展可能与这种生物转化的需要有关, 6 提出的硫氢依赖性途径包括硫醇的酶和非酶生物转化。事实上,GTN 与有限范围的硫醇(如半胱氨酸、N-乙酰半胱氨酸和硫代水杨酸)的非酶相互作用导致 GCase 的活化,EC50 在 uitro.t 中无论 GTN 在 uiuo 中生物转化的确切机制如何,都可以假设,如果将硫醇官能团掺入硝酸酯的结构中, 这些分子有可能在不依赖GTN生物转化途径的情况下激活GCase并释放-NO。我们选择合成含有掩蔽硫醇基团的硝酸酯,作为这种巯基烷基硝酸盐和潜在-NOprodrugs的祖代。选择三种硝酸甘油衍生物 1.2 和 5 作为靶分子。合成1-的困难 然而,在硝酸盐和硫醇浓度分别高达25和100 mmol-'的情况下,没有检测到1-NO的释放,采用Clark型。无选择性电极。关于GTN作为.NO pr~drug的功能仍然存在疑问.~ 7 LOH LOH LOH Scheme 1 多硝酸酯由以下原因引起:(i) 除高酸性和氧化性硝酸盐-硫酸双相混合物外,所有硝化程序均不完全硝化,'s 和 (ii) 对 S,2 取代 @-硝基-取代碳的反应性大大减弱。例如,1-卤代甘油-2,3-二硝酸酯与硫代乙酸根离子在各种条件下和冠醚存在下不能通过反应合成硫酯5,尽管单硝酸盐6是以这种方式合成的,收率很高。通过Bunte盐2(方案1)选择通往二硫键1的路线。2的合成由3-溴丙烷-1,2-二醇(90 mmol)进行硝化,滴加到硝酸(68-70%,4.0当量)和硫酸(95%,4.0当量)的冷混合物中,溶于CH2CI2(50 ml)中。在室温下进一步反应30分钟后。,将有机层分离、洗涤、干燥、浓缩,得黄色油状,用硅胶快速色谱法提纯,得3-溴丙烷-1,2-二醇二硝酸酯7,收率为45%。Bunte盐2由硝酸盐以65%的收率从硝酸盐中制备,通过与Na2S,0的等摩尔部分反应,在3:1 MeOH-H,O中,在50“C下反应10 h,然后通过硅胶快速色谱法纯化。在EtOH-H,O(1:1)中,用小摩尔过量的H202(30%)氧化2,催化量为H,SO,2 d。用CH2C1萃取,浓缩得到J. Chem. Soc., Perkin Trans.I, 1996 1073 表1 硝酸盐的熔点、NMR、IR和质谱特性 1-4“ Compd. MP/OC UPPm) MPPm) v,,,/cm-'f m/z (片段, %)d 液体 5.43-5.55 (2 H, m) 77.08/77.00 1634, 1270, 429 (M + C1, loo), 1 4.84-4.93 (2 H, m) 69.33169.29 1042,995, 393 (M -1, 10) 4.60-4.69 (2 H, dd, J 6, 13) 37.05136.89 855 2.97-3.16 (4 小时, 米) 2 86 (10 月) 5.75-5.80 (1 小时, 米) 79.02 1638, 1449, 323 (米 + 钠, 53) 4.99-5.07 (1 小时, dd, J 3,6) 70.97 1378,1351, 4.774.86 (1 小时, dd, J 6, 13) 32.04 1290, 1210, 3.20-3.23 (2 小时, d, J 7) 1042,654 65-66 5.80-5.87 (1 小时, 米) 76.95 1651, 1344, 218 (米 + C1, 100) 3 4.674.75 (I H, dd, J 5, 11) 69.88 1286, 1139, 4.504.57 (1 H, dd, J 2, 11) 48.66 937 3.69-3.80 (1 H, dd, J 8, 15) 3.35-3.44 (1 H, dd;J 3, 15) 64-65 5.84-5.90 (I H, m) 80.49 1649, 1339, 202(M + C1, 100)4 4.98-5.06 (1 H, dd, J 4, 12) 75.07 1287, 1122, 4.774.83 (1 H, d, J 12) 64.04 926 3.50-3.58 (I H, dd, J 2, 15) 3.31-3.42 (1 H, dd, J7, 15) '所有化合物均通过元素分析或高分辨率质谱、HPLC和NMR分析进行均一性表征。CDCl,作为溶剂,除 2 [(CD,),SO] 外。J 值,单位为 Hz。 '作为 KBr 光盘运行,除了 1 个作为整洁的胶片运行。除 2 个(ES'、Na)外,所有电离均以化学电离 (CI, CI-) 运行。表2 硝酸盐鸟苷酸半胱酶活化剂量-反应曲线汇总 2 4在存在和不存在硫醇 (2 mmol 1-') 的情况下,相对于 GTN + 2 mmol 1F' 半胱氨酸' GTN + cys 2 (无硫醇) 2 + cys 2 + DTT 3 + cys 4 + cys 4 + DTT % 最大响应b 100 (5) 105 (12) 293 (15) 164 (23) 1087 (200) 98 (16) 174 (30) 最大响应浓度 (mmol l-') I .O 0.5 5.0 5.0 1.0 5.0 1.5 GTN当量浓度(mmol 1~')~ 1.o 0.4 0.7 2.0 0.1 5.0 0.8“ 使用2-3种单独制剂的46个实验的平均值。各种硝酸盐在高于基础浓度时没有反应:GTN、GTN + DTT、1、3,3 + DTT、4、甘油-1,2-二硝酸酯 + 半胱氨酸。对 1(+DTT 或 cys) 的反应是可辨别的,但<20%。一些响应没有稳定期,因此 EC,, 值不能引用。在单独的实验中,对GTN + cys的最大响应范围为360-540 pmolmin-'mg-',并设定为100%。相对于最大 GTN + cys 响应的其他响应表示为具有标准误差的百分比。观察到最大响应的硝酸盐浓度:浓度不超过 5 mmol 1-' (1 mmol I-for 3)。对 GTN + 半胱氨酸的反应达到最大反应(即 100%)的硝酸盐浓度。用硅胶闪蒸4-苯基取代的硫磺酸液纯化后,四硝酸盐1的收率为47%,而只有一种4异构体是层析法。1 和 2 的 3CNMR 谱图分别显示 6 个和分离的 20 3 个信号,正如预期的那样,从两个硝酸盐 1-6 对可溶性 GCase 的活化中,在 1 个和 2 个中仅测定了一个(表 1)。采用放射免疫测定方法的'H NMR.§硝酸甘油衍生物(1,2和7)的剂量反应谱图是硝酸盐14和感兴趣的GCase活化的曲线,因为在存在和不存在半胱氨酸和二硫苏糖醇亚甲基的情况下,硝化GTN处的双偶联很大,并且在(DTT;均为2 mmol I-')处有小的或不可观察到的双偶联。这些曲线的数据是其他亚甲基位置(表I)“,表2总结为:(i)浓度 预计双(2,3-二羟基硝酸盐)二硫键8的简单硝化反应将导致硫氧化和GTN+半胱氨酸的不良反应,以及(ii)最大产率为1, 由于每种硝酸盐测得的响应具有高度氧化性。GCase 检测数据培养基。然而,探索了这种替代途径,表明硝酸二硝酸酯激活 GCase,其亚毫摩尔氧化条件与上述条件相似。只有EC50,在没有任何添加硫醇的情况下,与GTN相比,少量的两种含有机硝酸盐的产物需要添加半胱氨酸。与GTN相比,化合物2和4也从DTT存在的双相硝酸盐激活GCase的有机层中分离出来。在二氧化硅上对3和4进行色谱纯化 此外,观察到硝酸盐2和3产生大量凝胶,收率分别为5%和lo%,结果显示,相对于GTN的响应升高。两者的活性均为四硝酸盐 1。为这些四硝酸盐 1 获得的 NMR 谱图非常低,完全等同于甘油-l,2-产物具有高度溶剂依赖性,并且与该测定中的二硝酸盐相似。甘油二硝酸酯的甘油没有活化GCase,但在该测定中观察到单硝酸盐(<5mmol IF')的显着差异。大的双子偶联与上场而不是下场亚甲基质子有关(表l)。I9 确定的结构鉴定取决于质谱数据:软 $ 可以得出几种替代的环化反应,包括,大多数化学电离与 C1 离子捕获合理地确定 3 和 4,C-1 伯醇对磺酰或亚磺酰 S 的分子内攻击,硫醇置换导致 3 和 4 分别是磺内酯和硫磺酸。硝化介质 respectively.in 简单的环化可能是可能的(方案I).$ Durst和5从大鼠主动脉中新鲜制备了部分纯化的酶,同事们先前已经分离出匀浆的两种非对映异构体。有关完整的实验细节,请参见参考文献 21。1074 J. Chem. SOC.,珀金译.I, I996 为了扩展 thc GCase 数据,检查了硝酸盐 2、3 和 4 对大鼠主动脉组织的松弛作用.7 与对照实验相比,在这种完整组织测定中,观察到所有三种硝酸盐都引起显着的组织松弛。2、3和4的EC50值分别为3.94、3.37和9.06 pmol 1。在类似的大鼠主动脉松弛试验中,亚硝基硫醇(Bu'SNO)和GTN本身分别产生5 pmol 1和8.3 nmol 1的EC值.22本文报道的四种含硫硝酸盐中的三种,两种单硝酸盐(3,4)和一种硝酸盐(2),被证明以比GTN更高的最大水平激活GCase。此外,化合物2不需要添加硫醇即可活化。2、3和4对大鼠主动脉组织的显着松弛作用与GCase激活数据相容。硫原子p在硝酸基团上的定位允许S通过五元环与硝酸盐N的分子内反应.23该设计建立在GTN的生物转化理论之上,其中与半胱氨酸的分子间反应导致形成半胱氨酰亚硫酸盐,该半胱氨酰亚砜可以释放*NO或直接激活GCase。3,13*25 需要机理研究来确定化合物 14 激活 GCase 的途径是否涉及这种分子内激活。然而,开发新型硝酸酯的潜力,包括单硝酸盐和二硝酸盐,其活性与硝酸甘油酯本身显着不同.11 致谢 感谢安大略省心脏与中风基金会的财政支持,Grant #A2259 以及Ralph Whitney博士的最初参与。1 胸主动脉条由雄性 Sprague-Dawlcy 大鼠(Charles-River,加拿大)制备,如参考文献 22 所述。用去氧肾上腺素(0.1 pmol I-')次最大收缩组织,并暴露于不同浓度的硝基血管扩张剂以获得浓度反应曲率。11 然而,已经报道了两种含有半胱氨酰残基的单硝酸盐,(i) S-N 间距不允许通过小环(<6 个原子)快速分子内反应,以及 (ii) 没有 S 的对照化合物以与半胱氨酰衍生物相当的方式进行^。^ 参考文献 1 J.Abrams, Am. J. Cardiol., 1992, 70, 30B. 2 R.A, Yeates, Ar-neiin.-~orsch.l药物研究, 1992,42, 1314;GS马克斯,Cun。J. Physiol. Pharmacol., 1992, 65, 11 1 I;L. J. Ignarro、H. Lippton、JC Edwards、WH Raricos、AL Hyman、PJ Kadowitz 和 CA Grueter、J. Phurmacol。Exp. Ther., 1981, 218, 739.3 S. Katsuki、W. P. Arnold 和 F. Murad、J. Cvclic Nucl。研究, 1977,3, 239.4 G. S. Marks、B. E. McLaughlin、SL Jimmo、M. Poklewska-Koziell、J. J. Brien 和 K. Nakatsu,毒品。梅塔。处置, 1995, 23, 1248.5 S. Moncada, R. M. J. Palmer 和 A. G. Ferrige, Nature (I,ondon), 1987, 327, 524;S. Moncada、R. M. J. Palmer 和 EA Higgs,药理学。修订版, 1991, 43, 109.6 B. M. Bennett、B. J. McDonald、R.Nigam 和 W. C.Simon,Trends Pharmucol。科学, 1994, 15, 245.7 W. R. Kukovetz 和 S. Holzmann, Eur. J. Clin.药理学, 1990, 38, S9.8 A.R.巴特勒、F.W.弗利特尼和D.L.H.威廉姆斯,《趋势Phurmacol》。科学, 1995, 16, 18;SC Askew、AR Butler、FW Flitney、GD Kemp 和 IL Megson,Bioorg。Med. Chem., 1995, 3, I. 9 N. N. Belushkina, N. B. Grigoryev and I. S. Severina, Biochemisfry (Moscow), 1994, 59, 1257.10 D.Morley和L.K.Keefer,J.Curcliovusc。普尔马科尔。,1993, 22 S7, s3.11 M. Feelisch, M. tePoel, R. Zamora, A. Deussen and S. Moncada, Nature (London),1994,43, 109.12 MG Rogaert,J.心血管。药理学, 1991, 17 S3, S309;U. Elkayam, A. Mehra, A. Shotan, E. Ostrzega, Am. J. Cardiol., 1992,70,98B.13 M. Feelisch, J. Crwdiovasc.药学, 199 1, 17, S25.14 H.-L.Fung 和 S.-J.钟,Biochenz。药学, 1993,45, 157.15 H.-L.Fung 和 S. Chong,Biochem。Plzarmacol., 1991, 42, 1433;MA Kurz、TD Boycr、R. Whalen、TE Peterson 和 DG Harrison,Siochem。J.,1933 年,292 年,545 年。16 M. Feelisch 和 E. Noack,欧洲药理学杂志,1987,142,465。17 R. A. Yeates、M. Schmid 和 M. Lcitold,Biochem。药剂学, 1989,38, 1749.18 T. Urbanski,《炸药的化学与技术》,第2卷,佩加蒙,牛津,1965年;C. D. Marken, C. E. Kristofferson, M. M. Roland, A. P. Manzara 和 M. W. Barnes, Synlhesis, 1977, 484.19 F. Buckell, J. A. Hartry, U. Rajalingam, B. M. Bennett, R. A. Whitney and G. R. J. Thatcher, J. Chem. Soc., Perkin Trans. 2, 1994, 401.20 N. K. Sharma, F. deRenach-Hirtzbach 和 T. Durst, Gin.化学学报, 1976,54,3012.21 R. M. Bennett, B. J. McDonald, R. Nigam, P. G. Long and W. C. Simon, Can. J. Physiol. Phurmcicd., 1992, 70, 1297.22 J.J.麦奎尔、D.J.安德森和B.M.贝内特、J.药剂。E.p. Ther., 1994, 271, 708;D. H. Stcwart, D. L. Hayward 和 R. M. Bennett, Cm J. Physiol. Pharmacol., 1989, 67, 1403.23 A.J.柯比,啊。Phys. Org. Chem., 1980, 17, 183.24 J. Zanzinger, M. Feelisch 和 E. Bassenge, J.Curc1iova.r~。药理学, 1994, 23, 772.2s DR Cameron、AMP Borrago、BM Bennett 和 GRJ Thatcher,Ciin。化学学报, 1995, 1267;J. D. Artz, K. Yang, C. Sanchez, B. M. Bennett 和 G. R. J. Thatcher, Chem. Commun., 1996,927.论文 6/02080A 1996 年第 25 期收到 1996 年 4 月 2 日接受 J. Chem. SOC.,Perkin Trans. 1, 1996 1075

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号