首页> 外文期刊>journal of orthopaedic research >Structure and function of embryonic growth plate in the absence of functioning skeletal muscle
【24h】

Structure and function of embryonic growth plate in the absence of functioning skeletal muscle

机译:Structure and function of embryonic growth plate in the absence of functioning skeletal muscle

获取原文
           

摘要

AbstractNormal growth and development of the skeleton require the presence of viable, actively contracting skeletal muscle throughout the fetal period. A chick embryo model of midgestation chemical paralysis and secondary muscle atrophy was used to test the hypothesis that functioning muscle stimulates the growth of long bones by influencing the proliferation, differentiation, and hypertrophy of chondrocytes in cartilage of the epiphysis and growth plate. Paralysis did not alter the overall developmental stage of the long bone or the organization of the growth plate. Compared with controls, however, uptake of bromodeoxyuridine in the paralyzed chick was reduced by 27‐55 in the chondroepiphysis and uppermost zone of the tibial growth plate, indicating reduced proliferation of chondrocytes. A specific reduction in the size of the proliferative zone and a reduced number of proliferating cells were also observed. By contrast, in the second, post‐proliferative zone of the growth plate, the height of the zone was unchanged and its area was only slightly reduced compared with controls. Finally, median hypertrophic cell profile area, a measure of cell size, was not significantly affected by paralysis, although frequency analysis revealed modest numerical reductions in the population of the largest hypertrophic chondrocytes in the paralyzed group. These data suggest that the role of functioning fetal muscle in maintaining proper skeletal growth may be mediated primarily through specific stimulation of the recruitment or proliferation of immature chondrocytes, or of b

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号