首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Terpenoids. Part VI. Preparation ofent-13,14α-2H2kaur-16-ene and some derivatives; bridgehead enolisation ofent-17-nor13,14α-2H2kauran-16-one
【24h】

Terpenoids. Part VI. Preparation ofent-13,14α-2H2kaur-16-ene and some derivatives; bridgehead enolisation ofent-17-nor13,14α-2H2kauran-16-one

机译:萜类化合物。第六部分.制备13,14α-2H2kaur-16-ene及其衍生物;桥头堡烯醇化-17-去甲并13,14α-2H2贝壳烷-16-酮

获取原文
获取外文期刊封面目录资料

摘要

378 J.C.S. Perkin ITerpenaids. Part V1.l Preparation of ent-13,14a-2H2Kaur-16-ene andSome Derivatives ; Bridgehead Enolisation of ent-I 7-Norl3,1 4a-$Hn-kauran-16-0110By David H. Bowen, Christopher Cloke, and Jake MacMittan," The School of Chemistry, The University,Rearrangement of the phenylsulphonylhydrazone of ent-beyeran-16-one (ent-l3-methyl-l7-nor-8~,13c3-kauran-16-one) (1 7) with sodium methoxide in methan2Hol yielded ent-l 6-,Hbeyer-l 5-ene (1 l ) , ent-13,14ar-2H2)kaur-l 6-ene (5). ent-l3,1 4a-ZH2 kaur-15-ene (20). and three methoxy-substituted isomers ofwhich ent-I 6-meth0xy~H, kaurane was the main component. Bridgehead enolisation of ent-l7-norl3.14a-2H, kauran-16-one (6) was demonstrated by oxidation of the ketone, before and after heating with potassium t-butoxide, to the lactones (23) and (25).respectively, in which the absence or presence of the 13-hydrogen atomwas shown by the presence or otherwise of a one-proton multiplet at 7 5.22 in the n.m.r. spectra.The mass spectra of some of the *H,diterpenes, and the n.m.r. spectra of the enr-beyeran-15- and 16-ones(1 6) and (17) in the presence of the shift reagent Eu(dpm),. are discussed.Bristot BS8 1TSPRECEDENTS 2-4 for the formation or intermediacy ofbridgehead olefins encouraged us to examine 13-bridge-head enolisation of e.nt-17-norkauran-16-one (1) as a basisfor an auto-oxidative route to ent-13-hydroxykauranesDrequired for metabolic studies. Since the completion ofthis study numerous additional examples of the inter-mediacy of bridgehead olefins in normal-sized rings haveappeared.6 A particularly relevant example is thebridgehead enolisation in the bicyclo3.2.loctanonescopacamphor and longicamphor, reported by Turnbullet aL6 prior to our preliminary note.'Direct base-catalysed deuteriation of the nor-ketone(1) with potassium t-butoxide in t-butyl alcohol wasexamined first.Mass spectrometry of the recoveredketone showed the following distribution of label:6 2Ho, 34.5 2Hl, 58 eH2, 1.5 2H,. After treat-ment with 0.05~-sodium hydroxide, the 2H distributionwas 96.5 2Ho, 3.5 2Hl. ?'he low percentage of tri-deuteriated material precluded the unambiguous assign-ment of the third 2H atom to the bridgehead position,and the known 8 stereospecificity of 2H-1H exchange atthe 15-position in the nor-ketone (1) made interpretationof these results difficult.Moreover, deuteriation at C-12via the homoenolate anion9 could not be excluded.Accordingly, definitive evidence for bridgehead enolis-ation was sought by studying 2H-1H exchange in the13-2Hnor-ketone (2), derived from ent-13-2Hkaur-16-ene (3), the latter being rationally synthesised by re-arrangement of ent-beyeran-16-one phenylsulphonyl-hydrazone (13) in a deuteriated alcohol. The startingpoint was ent-kaur-16-ene (4), which was isolated lo fromCryj6tomeria japonica var. elegans. It was isomerised byiodine in boiling xylene to give a mixture containing 70ent-beyer-15-ene (lo), 15 ent-kaur-16-ene (4), and 15ent-kaur-15-ene (18) (cf. ref.ll), which was separated bypreparative layer chromatography (p.1.c.) with difficulty.Hydroboronation of ent-beyer-15-ene (10) l2 provided the1 PartV, J. MacMillan and E. R. H. Walker, J.C.S. Perkin I,2 W. Carruthers and M. J. Qureshi, Chem. Comm., 1969, 832.R. Keese and J. P. Chen, Angew. Chem. Internat. Edn., 1971,J. R. Wiseman and W. A. Pletcher, J. Amer. Chem. SOC.,K. W. Turnbull, S. J. Gould, and D. Arigoni, J.C.S. Chem.1972, 1274.10, ,262.1970, 92, 966.6 J. Mellor, Ann. Reports (B), 1972, 69, 408.Comna., 1972, 697.15- and 16-alcohols (14) and (15), which were oxidised tothe respective ketones (16) and (17). Since the hydro-carbons (10) and (18) and the alcohols (14) and (15) wereR' R2 R3 R' ( 10 ) R' = Me, R2 = H( 1 ) Me H H 0 ( 1 1 1 R* =Me, R2=D( 3 ) M e H D CH2( A ) Me H H CH2( 5 ) Me D D C b( 6 ) M e D D 0( 7 1 Me D H 0( 8 ) Me D D Me,OMe( 2 ) Me H D 0 t 12 I R' = C02Me, R~ =H( 9 ) Q M e H H CH,( 13 ) R'= Hz, R2=N-NH602Ph( 14) R'=H$- OH, R2 H2( I 5 1 R' = H,, R,= H.p - OH(18) R'=Me,R2=R3=H(19) R1=C02Me,#=@=H(20) R1=Me,F?=$ = D(16) R'= 0,R2=H2( 17) R'= H,,R~ =odifficult to separate it was more economical to convertent-kaur-16-ene (4) directly into the readily separableketones (16) and (17) and ent-kauran-lhne withoutD. H. Bowen and J. MacMillan, Tetrahedron Letters, 1972,8 R. Evans and J. R. Hanson, J.C.S. Perkin I , 1972, 2382.A. Nickon and J. L. Lambert, J. Amer. Chem. SOC., 1966,88,lo J. MacMillan and E. R.H. Walker, J.C.S. Perkin I, 1972,l1 A. Yoshikoshi, M. Kitadami. and Y. Kitahara, Tetrahedron,la P. R. Sobti and S. Dev, Tetrahedron Letters, 1966, 3939.4111.1906.981.1967, 28, 11761975 379intermediate separations. Like their enantiomers,13 theketones (16) and (17) were distinguished by the non-reactivity of the less polar and more hindered 15-0x0-group (16) to carbonyl reagents. They were also dis-tinguished by their n.m.r. spectra run in the presence ofthe shift reagent Eu(dpm),.The gradient of the least squares plot of the observedshift (So) against Eu(dpm), concentration (Lo) was ob-tained for the methyl and CH,CO protons in the 15- and16-ketones (16) and (17). In the 16-ketone one of the15-methylene protons was located by INDOR.ForSo 4 8, (shift for the substrate-reagent complex), thegradient of a plot of so against the ratio Lo : So (sub-strate concentration) is given by SoSc/(S, + l / K ) whereK is the equilibrium constant for the formation of thecomplex. Since measurements are usually made atsimilar concentrations (So ca. 0.1 mM), the shift gradientscan be usefully compared." If K is large, the gradientsimplifies to 8,. However, some recently determined l5values of K are not sufficiently large for 1/K to beneglected. We therefore elected to normalise thegradients relative to the smallest gradient, which wastaken as unity. The term So/(So + 1/K) cancels out forall proton gradients and the normalised gradients areindependent of the concentration So.Relative gradientscalculated from the McConnell equation by using reitera-tive computation, were compared with the observedrelative gradients for a series of parameters. The bestfits, shown in Table 1, are not intended to indicate theTABLE 1Relative shift gradients for ent-beyeran-15- and 18ones16-Ketone (16)Proton Obs. Ca1c.a16-HA 8.4 6.716-HB 8.3 6.72O-H, 6-1 6-119-Hs 1.2 1.417-H3 1.1 1.618-Ha 1.0 1.016-Ketone (17)67-0 40.060-0 48.06.6 9.91-0 1.03-1 1.648.0 44.0Obs. Calc.iA@ Eu-O-C 140"; Eu-0 2 A; ring A in boat conformation.b Eu-0-C 180"; Eu-0 2.7 A; ring A in chair conformation.best conformations but to illustrate that sufficient agree-ment was obtained to assign the methyl signals for bothketones. In the spectra of the uncomplexed ketones the17-proton signals were at higher field for the 16-ketone,indicating that ring D in this ketone is twisted to place the17-protons in the shielding zone of the 16-carbonyl group.This twisting would relieve steric interaction between the20- and the 15-protons.A close analogy for the rearrangement of the phenyl-sulphonylhydrazone (13) to ent-kaur-16-ene (4) is pro-vided by Coates and Bertram,16 who obtained methyl ent-kaur-16-en-18-oate (9) and the epimeric 15-ene togetherwith methyl ent-beyer-15-en-18-oate (12) and methyl ent-13,16-cycloatisan-18-oate (22) by decomposition of thesodium salt of the $-tolylsulphonylhydrazone (21).We** Y. Kitahara and A. Yoshikoshi, Tetrahedron Letters, 1964,14 J.K. M. Saunders and D. H. Williams, J. Amer. Chem. SOC.,A1771.1971, 95, 641.examined the decomposition of the phenylsulphonyl-hydrazone (13) under a variety of conditions, analysingthe products by g.1.c. and g.1.c.-mass spectrometry0 5 0 5 0 5 10t I minG.1.c. of products from decomposition of the phenylsulphonyl-hydrazone (13) with sodium methoxide in: (a) 3,6-dioxaoctan-1-01 at 190"; (b) 3,6-dio-xaoctan-l-ol at 90"; and (c) methanol.Products : 1, ent-beyer-16-ene; 2, ent-kaur-16-ene ; 3, ent-kaur-16-ene; 4 and 6, unknown isomers of 6; and 6, ent-16-methoxykaurane(Figure). With sodium methoxide in 3,6-dioxaoctan-l-,HI01 at 190" for 1 h the main product (35) was non-deuteriated ent-beyer-l5-ene (lo), obtained in conjunc-tion with e~tt-~Hkaur-15- and 16-enes (each 4)Figure (a) containing ca. 20 2H.At 90" for 2 h with@ -NH*S02C6H,Me flMe' H ' C02Me H C02Me( 21 1 ( 2 2 )( 23 ) R'= R2= D( 2 4 ) R ~ = R ~ = H(25) R ' = D , R ~ = Hanother preparation of the same solvent the total yield ofhydrocarbons was 75 Figure (b) of which 17 wasent-kaur-16-ene containing 50 ,HI. However, at bothl5 I. Armitage, G. Dunsmore, L. D. Hall, and A. G. Marshall,Canad. J . Chem., 1972, 50, 2119.l6 R. M. Coates and E. F. Bertram, J . Org. Chem., 1971, 86,3722380 J.C.S. Perkin Itetroxide-sodium periodate gave the r2HAnor-ketone (6)without change in the 2H content (Table 2) either beforeor after treatment with dilute sodium hydroxide, showingthe absence of 15- and 17-2H in ent-2H2kaur-16-ene.Oxidation of the nor-ketone (6) to the lactone (23) alsooccurred without change in the 2H content (Table 2).The n.m.r. spectrum of the lactone (23) showed that the13-H multiplet occurring at 5 5.22 in the spectrum of theundeuteriated lactone (24) was absent.The formation of e~tt-l6-~Hbeyer-15-ene (1 l), a t -13,14a-2Hkaur-16-ene (5), and ent-13,14a-2H,Jkaur-15-ene (20) from the rearrangement of the hydrazone (13)with sodium methoxide in methan2Hol may be ex-plained by the intermediary of the 15-ene (26).Stereo-specific 15-deuteriation of this enamine followed byacid-catalysed decomposition l7 would provide the ion(27). The latter ion can either give ent-16-2Hbeyerene(11) by stereospecific loss of the W2H or undergo re-arrangement to the ion (28) and hence the ent-13,14a-2H2kaurene~ (5) and (20).Capture of the ion (28) bymethanol would explain the formation of ent-16-methoxy-C2Hkaurane (8). However similar capture of the ion(27) by methanol does not account for the formation ofeither of the two isomers of ent-meth~xy~H, kaurane.Both showed different mass spectral fragmentationsfrom those of the two products obtained by treatment ofent-beyer-15-ene (10) with methanol and sulphuric acid,and their structures are unknown.Bridgehead enolisation in ent-17-nor13,14a-2H2-kauran-16-one (6) was demonstrated by heating withpotassium t-butoxide in t-butyl alcohol. The nor-ketone used in this experiment was obtained from a re-arrangement of the phenylsulphonylhydrazone (13) withthe following label distribution: 4 2H,, 51 2Hl, and45 2H2 (Table 2).After treatment with base, the nor-ketone (7) had clearly exchanged one 2H atom (Table 2).This exchange was shown to be at the 13-position byoxidation to the lactone (25), the n.m.r. spectrum ofwhich showed the one-proton multiplet at 7 5-22 for the13-hydrogen atom.Evans and Hanson have shown that the M+ - 43 ionsin the mass spectrum of ent-kaur-16-ene (4) and ent-17-norkauran-16-one (1) are formed by loss of ring D. Theysuggested that this fragmentation also involves thetransfer of the 9-hydrogen atom together with thetransfer of one of the 14-hydrogen atoms in the case of thehydrocarbon (4) or, in the case of the ketone (1) with thetransfer of an unspecified hydrogen atom.Comparison(Table 3) of the ZH content of the M+ and M+ - 43 ionsfor the .2H2 derivatives indicates partial loss of the ent-14a-2H in both the ent-kaur-16-ene and the nor-ketone,and also some loss of the 13-2H in the ent-kaur-16-ene.The data also show that the M+ - 43 ion in ent-13,14a-2HJkauran-lEi-one does not involve loss of the deuterium ;on the other hand the M+ - 58 ion in the fragmentationof this compound appears to involve the stereospecificloss of one 2H atom, probably that at position 14.17 J. W. Powell and M. C. Whiting, Tetrahedron, 1969, 7, 306.18 J. M. Coxon, M. P. Hartshorn, D. M. Kirk, andM. A. Wilson,Tetrahedron, 1969, 25, 3017.temperatures the yield of ent-kaur-16-ene varied from0 to 20; the 2H incorporations were also low andvariable owing to difficulty in the preparation of thedeuteriated solvent.As expected17J* the use of lessacidic alcohols such as propan-2-01 and t-butyl alcoholyielded almost entirely ent-beyer-15-ene (lo), presumablyvia the carbene. With sodium methoxide in methan-2Hol Figure (c) nearly equal amounts of the hydro-carbons were obtained together with three isomericmethoxy-compounds of which ent-l6-metho~y~Hkaurane (8) was the major product. The 2H content ofthese products is shown in Table 2; the incorporation ofTABLE 2gH Content (yo) a of en 13, 14a-2H,kaur-16-eneand related compoundsCompound 2H, 2Hl 2H26 38 576 37 6619 79 26 38 676 36 596 36 694 61 4643 62 642 61 7(6)(20)(11)( 6)(6)(23)(6)( 7)(26)'Average of 10 mass spectral scans; corrected for 1.c Secondtwo deuterium atoms in the ent-kauranes was unexpectedand is discussed later.The positions of the 2H atoms inthe products were determined from the following data.The hydrocarbon mixture Figure (c), separated fromthe methoxy-compounds by p.l.c., was further fraction-ated on silica gel-silver nitrate layers to give ent-2HJ-kaur-16-ene and a 2 : 1 mixture of ent-2H,beyer-15-eneand ent-ZHJ kaur-15-ene. The latter mixture washydroboronated, then oxidised to give a mixture ofketones which was analysed by g.1.c.-mass spectrometry.The 2H atom was retained in the ketone (16) but notin the 16-ketone (17), showing that the ent-beyer-15-enecontained a 16-2H atom.Moreover the n.m.r. spectrumof the mixture of ent-16-2Hbeyer-15-ene (11) and ent-2H2kaur-15-ene did not show the higher field proton(7 4.60) of the AB-vinylic proton signal of ent-beyer-15-ene (lo), and the lower field proton ( T 4.33, J 6 Hz) of (10)was present in the case of (1 1) as a broad singlet ( T 4.32).Thus the higher field vinylic doublet in the spectrum of(10) is due to the 16-proton. Comparison of the n.m.r.spectrum of eat-kaur-15-ene (18) with that of ent-2HfJ-kaur-15-ene admixed with ent-16-2H,beyer-15-ene (1 1)showed the following significant differences. The multi-plet at T 7-63, assigned to the lproton, was absent fromthe spectrum of the 2H2 compound.Also the doublet(7 7.82, J 11 Hz) which was assigned to the ent-14a-proton in ent-kaur-15-ene (18) since there was no furthercoupling to the 13-proton (0 ca. 90") occurred in thespectrum of the 2H2 compound as a broad singlet. Fromthese facts ent-13, 14a-2HJkaur-15-ene (20) was identifiedas one of the products.The presence of a 13-2H atom in the ent-2H2kaur-16-ene was established as follows. Oxidation with osmium8 After treatment with aqueous sodium hydroxide.preparation1975TABLE 32H Content a of some fragment ions fromend-13, 14a-2H2kaur-16-ene and related compoundsCompound Ion 2H, 3H, 2H,M+ 6 36 57M+ - 16 4 39 57M+ - 43 25 60 25M+ 3 37 59M+ - 15 3 42 661M+ - 43 9 53 35A f t 43 62 5M+ - 15 46 61 3M+ - 43 62 32 6ent-Kauran-16-one M+ 10 37 63M+ - 15 17 36 48M+ - 43 17 34 49M+ - 58 10 83 7t 5 )(6)( 7)Data from a single mass spectral scan of each compoundSignificant ions at mle 246, 245, and 244 occur in thespectrum of both the ent-beyeran-one (16) and the16-2H derivative with the same relative abundance, andclearly represent the loss of ring D with the transfer ofnone, one, and two hydrogen atoms.corrected for lac.EXPERIMENTALFor general experimental details see Part II.l0 G.1.c.-mass spectrometry was carried out as described in ref.19.For g.1.c. and g.1.c.-mass spectrometry a 2 SE-33 columnwas routinely used isothermally a t 181".Calculation of ReZative Shift Gradients.-For a distantproton (Hd), the measured distance Hd * * - 0 (a), the relativeshift gradient (= l), and trial values for the Eu - - Hddistance ( r ) and Eu .* - 0 distance (b) were used to calculateK from the expression (i). The s and a values for theK3(r2 + b2 - - 4b2r2(i) 4b2r6 Shift (s) =remaining protons were considered in turn. For the valuesr between a lower limit and rising by increments to a higherlimit the values s were calculated. If the observed valuesfor s lay between two successive calculated values for s, oneof the calculated s values was printed out together with theappropriate value Y . Thus a set of r values were obtainedwhich best fitted the observed data for the trial values of band Y for the proton Hd. If an observed value of s lay on aturning point it might be missed ; to avoid this the relevantturning points were printed out by using the expression (ii).Y (at turning point)= bz + 3a2 f 2(a4 - a2b2 + b4)*1" (ii)Direct Deuteriation of ent-17-Norkauran-16-one (1) .-Thenor-ketone (45 mg) , t-butyl2Halcohol (1 g) , and potassiumt-butoxide (1 g) were heated a t 140" for 6 days in a sealedtube. After addition of deuterium oxide (0.9 ml) theproduct was recovered in ethyl acetate and purified by p.1.c.on silica gel with light petroleum-acetone (4 : 1).Extrac-tion of the band a t RF 0-5-0-7 gave the 2Hnor-ketone ( l ) ,which crystallised from methanol in needles (40 mg), m.p.117-1 18O, with isotope distribution 6 2H,, 34.5 ZH,,58 2H2, 1.5 2H3; m/e 277 (7.5y0), 276 (36), 275 (20), 274(3), 262 (9), 261 (49), 260 (25), 231 (17), 123 (93), and 43 (100).ent-Beyer-15-ene (ent-l3-MethyZ-l7-nor-8P, 13P-kaur-15-me) (lO).-ent-Kaur-l6-ene (4) (500 mg), xylene (300 ml),and iodine (ca.200 mg) were boiled for 20 11. The mixturewas washed with aqueous sodium thiosulphate (3 x 60 nil)and water (3 x 50 ml), then dried and evaporated underreduced pressure to give a yellow oil. This product, shownby g.1.c. to contain 70 of eutt-beyer-15-ene (lo), 16 of ent-kaur-15-ene (18), and 15 of ent-kaur-16-ene (a), was frac-tionated by p.1.c. on silica gel-lOyo silver nitrate withbenzene-light petroleum (3 : 2). Rechromatography of thematerial recovered from the lower portion of the elongatedzone was repeated under the same conditions until ent-beyer-15-ene (10) (200 mg), m.p.ca. 30°, was obtained freefrom ent-kaur-15-ene (18) as judged by g.1.c. (Found: IMf,272.250. Calc. for C20H32: M , 272.250) ; T 9-26, 9.20, 9-17,and 9.02 (each 3H, s), 4.60 and 4.32 (d, J 6 Hz, 15- andent-Beyeran- 15- mzd 16-02s ( 14) and ( 15) .-ent-Beyer- 15-ene (200 mg) in tetrahydrofuran (50 ml) was treated with anexcess of sodium borohydride and boron trifluoride-ethercomplex. After 16 h a t room temperature, 3~-sodiumhydroxide (1 ml) and hydrogen peroxide (5 mi; 30 v/v)were added and stirring was continued for 0.5 h. Recoveryin ethyl acetate from the residue obtained by evaporationgave a gum which was separated by p.1.c. on silica gel H Fwith light petroleum-acetate (9 : 1) to give: (a) the morepolar ent-beyemn- 16-oZ (15), crystallising from ethyl acetatein needles, m.p.98-101" (Found: M+, 290.261. C,H,,Orequires M , 290.261); T 9-20, 9.15, 9.11, and 9.07 (each 3H, s)and 6-30 (lH, d, J 6 Hz); and (b) the less polar 15-alcohol(14), T 9.18, 9.14, 9.05, and 9.02 (each 3H, s) and 5.72 (4H, d,J 6 Hz), characterised by oxidation to the 15-one (16)(see later).ent-Beyeran-16-0ne (1 7) .-The 16-alcohol (15) (70 mg) wasoxidised with an excess of Jones reagent a t 0" for 15 min.The usual work-up gave the 16-ketone (17), crystallisingfrom light petroleum in needles (70 mg), m.p. 103-104"(lit.13 m.p. for enantiomer, 102-103") (Found: C, 83-7; H,11.0; M+, 288.245. C,,H,,O requires C, 83.5; H,11.1; M , 288.245); vmK (CHCI,) 1735 cm-l; T 9.19(18-H3), 9.14 (19- and 20-H3), 9-04 (17-H3), 8.34 (15-HB,J 18 Hz), and 7.31 (15-HA, J 3 and 18 Hz); m/e 288 (62y0),273 (68), 246 (12), 245 (38), 244 (24), and 123 (100).ent-Beyerafi-15-om (16) .-The 15-alcohol(l4) was oxidisedas in the previous experiment to the 15-ketone (16), crystal-lising from methanol in needles, m.p.88-89' (lit.13 m.p. forenantiomer, 88-89°) (Found: C, 83.5; H, 11.4. C,,H,,Orequires C , 83.3; H, 11.1); T 9.22 (20-H,), 9-18 (18-H8),9.16 (19-H3), 8.96 (17-H3), 8.14 (16-HB, J 19 Hz), and 7-86(16-H~, J 3 and 19 Hz); m/e 288 (52), 273 (31), 246 (16),245 (20), 244 (23), and 123 (100).Routine Preparation of ent-Beyerart- 15- and 1 ones froment-Kaur- 16-ene.--The following typical procedure wasroutinely used. The reaction product (910 mg) from ent-kaur-16-ene (1.3 g) and iodine (1.0 g) in xylene (500 ml) wasfreed from unchanged ent-kaur-16-ene by p.1.c.on silica gel-10 silver nitrate (0.4 mm) with light petroleum-benzene(4 : 1). The lower band gave a mixture of ent-beyer-15-eneand ent-kaur-15-ene (536 mg; 2 : 1 by g.l.c.), which wasdirectly hydroboronated in tetrahydrofuran (40 ml) withsodium borohydride (520 mg) and boron trifluoride-ethercomplex (5 ml). The resultant mixture (764 mg) of alcoholswas oxidised in acetone (50 ml) with Jones reagent (2 ml)to give a product which was separated by p.1.c. on silica gelH F (0.3 mm) by multiple elution with light petroleum-acetone (99 : 1). From the lower band ent-beyeran-16-one19 J.R. Bearder, J. MacMillan, and B. 0. Phinney, Phyto-chemzstry, 1973, 12, 2655.16-H) J.C.S. Perkin I(200 nig) was obtained by extraction with ethyl acetate thencrystallisation from methanoL From the upper bandrecovery in ethyl acetate gave a crystalline solid (232 mg)which was separated into ent-beyeran-15-one (1 13 mg) andent-kauran-l5-one (18 mg) by preparative g.1.c. (2 SE 30;12 ft X # in; 230 ---c. 250° a t 2" min-1).ent-Beyeran- 16-one Phenylsulphonylhydvazone ( 13) .-The16-ketone (17) (65 mg) in methanol (5 ml) was boiled for 6 hwith phenylsulphonylhydrazine (120 mg). The productwas purified by p.1.c. on silica gel HI? (0.4 mm) with lightpetroleum-acetone (3 : 1) to give the sulphouzylhydrazone (13)as needles (80 mg), m.p.199201O (decomp.) (Found: C,70.1: H, 8.7. C2,H,,N20,S requires C, 70.5; H, 8.6);v , ~ ~ (CHCl,) 1710, 1370, and 1170 cm-l. Under the sameconditions ent-beyeran- 1 !?-one (16) was unchanged.Aearrangemmt of ent-Beyeran- 16-one Phenylsulfihonyl-hydrazone (13) .-(a) I n 3,6-dZoxao~tan-l-~Hjol at 190". Thehydrazone ( 5 mg), sodium methoxide (5 mg), and 3,6-dioxaoctan- 1-2Hol (0.5 ml ; prepared by distillation froma mixture of the sodio-derivative and deuterium oxide) wereheated at 190" for 1 h. Water was added to the mixture,which was then extracted with ethyl acetate. Recoveryfrom the extract gave a gum shown to contain efit-kanr-16-ene (41, ent-kaur- 15-ene (1 8), and ent-beyer- 1 ene ( 10) in theratio 1 : 1 10 by g.1.c. Figure (a) and by g.1.c.-massspectrometry.Fractionation of this mixture by p.1.c. onsilica gel-25 silver nitrate with benzene-light petroleum(3 : 2) and recovery from the band at Rp 0-7 gave ent-kaur-16-ene (4); m/e 274 (4), 273 (17.5), 272(35.5),and43(100);78.5 2H0, and 21.5 2Hl. Recovery from the band a t RF0.2 gave a mixture of ent-beyer-15-e (10) and enb-kaur-15-ene (18).The hydrazone (5mg), sodium methoxide (5 mg), and a new preparation ofdeuteriated dioxaoctanol(0-5 ml) were heated a t 90" for 2 h.Work-up as in (a) gave e.lzt-kaur-16-ene (4) (50 2Ho, 50BH1) admixed with ent-beyer-15-ene (10) and ent-kaur-15-ene(18) Figure (b).(c) I n propan-Z-oZ. The hydrazone (0.5 mg), sodiummethoxide (0.5 mg), and propan-241 (0.4 ml) were heated at95" €or 12 h in a sealed tube.Addition of water and extrac-tion with ethyl acetate gave a product which containedmainly ent-beyer-15-ene (10) (g.1.c. at 185").Replacing the propan-2-01 in theprevious experiment by t-butyl alcohol gave a similar result.The hydrazone (60 mg), sodiummethoxide (80 mg), and methan2Hol (2 ml) were heated a t95" for 16 h in a sealed tube. Work-up as in (a) gave a gum(50 mg) with a composition shown in Figure (c) (by g.1.c.).P.1.c. of this gum on silica gel with light petroleum-acetone(9 : 1) gave a hydrocarbon fraction (10 mg; RF 0.7) and afraction (25 mg; RF 0.5-0.6) shown by g.1.c. (2 SE-33;185") and g.1.c.-mass spectrometry (2 OV-1; 188") tocontain three isomeric compounds (M+ 396) of which themain component (80) was identified as ent- 16-methoxy-kaurane (8) (4 *Ho, 41 2H,, 55 2H2) by comparison(n.m.r.and mass spectra) with an authentic specimen. Thetwo other methoxy-containing isomers had a similar 2Hcontent, they showed similar fragmentation pathways withbase peaks a t m/e 245.The hydrocarbon fraction was further fractionated onsilica gel-lO silver nitrate layers, developed with benzene-zo L. H. Briggs, R. C. Carnbie, B. R. Davis, P. s. Rutledge, andJ. K. Wilmhurst, J. Chem. SOC., 1963, 1346.(b) I n 3,6-dioxaoctan-l-f2Hjol at 90".(d) I n t-htyl alcohol.(e) I n methan2HoZ.light petroleum. The upper band (RF ca. 0.6) gave ent-13,14~t-~H,kaur-l6-ene (5) (3 mg). The lower band (RFca. 0.2) gave a mixture (3 mg) shown by g.l.c., g.1.c.-massspectrometry, and n.m.r.to contain 33 of ent-l3,14at-2HJkaur-15-ene (20) and 67 of e~t-l6-~Hbeyer-l5-ene(11). Hydroboronation of this mixture (2.3 mg) with anexcess of sodium borohydride and boron trifluoride-ethercomplex followed by Jones oxidation gave a product shownby g.1.c.-mass spectrometry to contain equal amounts ofent-beyeran- 15-one (19 2H0, 81 yo SH,), ent-beyeran- 16-one(1OOyo 2Ho), and ent-kauran-15-one (10 2H0, 36 2Hl,53 2H2).ent-17-Nm~13,14~t-~H~kauran-l6-one (6).-ent-Kaur-16-ene (2 mg; 38 2H2) was stirred a t 20" for 16 h in tetra-hydrofuran (0.5 ml) and water (0.5 ml) with osmium tetra-oxide (2 mg) and sodium periodate (50 mg). Recovery inethyl acetate gave the nor-ketone (6), m.p.116-117"(lit.,20 117"); 39 2H1, 57 2H2; m/e 277 (12y0), 276 (65),275 (41), 262 (12), 261 (65), 260 (44), 234 (4), 233 (14), 232(16), and 123 (100). The undeuteriated ketone showed m/e274 (loo), 259 (86), 231 (23), and 123 (88).After refluxing in methanol (5 ml) and 0-1N-sodiumhydroxide (5 ml), the CeHJnor-ketone (2 mg) was recoveredquantitatively and with unchanged 2H content.Bayer- VilZiger Oxidation of ent- 17-Norkauran- 16-0ne.-(a) The undeuteriated nor-ketone (15 mg) in chloroform (2ml) containing toluene-p-sulphonic acid ( 1 mg) with per-benzoic acid was oxidised as described by Hanson 21 to givethe lactone (24) (15 mg), m.p. 146-147" (lit.,21 147-148') ;7 9.18, 9.14, 8.94 (each 3H, s), 7.80 (15-H2), and 5.22 (m,13-H); m/e 290 (23), 285 (ll), 234 (171, 231 ( l l ) , 123 (36),and 41 (100).(b) The nor-ketone (2 mg; 39 2H1, 57 2H,) in di-chloromethane (10 ml) was oxidised with trifluoroaceticanhydride and 90 hydrogen peroxide (0.17 ml) as describedby Briggs et al.22 Separation of the product by p.1.c. on silicagel with light petroleum-acetone (9 : 1) to give unchangednor-ketone (20; RF 0.4) and the lactone (23) (80; RF0.2), with unchanged 2H content (g.1.c.-mass spectrometry)and showing no signal below 7 7.76 in an accumulated ( x 20)n.m.r. spectrum.(c) The nor-ketone (2 mg; 43 2Ho, 52 2H1, 5 2H,)was oxidised and purified as in (b) to give the lactone (25)with unchanged 2H content (g.1.c.-mass spectrometry) andshowing a one-proton multiplet a t 7 5.22 (13-H) in anaccumulated ( x 40) n.m.r. spectrum.Treatment of ent-17-Nor 13,14~-~H~kauran-l one hBase.--The nor-ketone (3 mg; 51 2H1, 45 eH,) washeated a t 100" for 48 h in a sealed tube with t-butyl alcohol(3 ml) and potassium t-butoxide (100 mg). After additionof water, the nor-ketone was recovered in ethyl acetate andpurified by p.1.c. as described earlier. G.1.c.-mass spectro-metry showed the isotope distribution: 43 2H,, 52 2H,,5 2H2.The S.R.C. is thanked for research studentships (toD. H. B. and C. C.) and for a research grant towards thepurchase of a G.E.C.-A.E.I. MS30 instrument with inte-grated gas chromatography.4/1808 Received, 2nd September, 19743PL J. R. Hanson, J. Chem. Soc., 1963, 5061.29 L. H. Briggs, R. C. Cambie, and P. S. Rutledge, J. CLm-SOC., 1963, 6374
机译:378 J.C.S. Perkin ITerpenaids。第 V1.l 部分 ent-[13,14a-2H2]Kaur-16-ene 及其衍生物的制备;桥头堡 Enolisation of ent-I 7-Nor[l3,1 4a-$Hn]-kauran-16-0110作者:David H. Bowen、Christopher Cloke 和 Jake MacMittan,“大学化学学院,重新排列 ent-beyeran-16-one (ent-l3-methyl-l7-nor-8~,13c3-kauran-16-one) (1 7) 的苯磺酰腙与甲醇钠在甲烷[2H]ol中产生ent-[l 6-,H]beyer-l 5-ene (1 l ) , ent-[13,14ar-2H2)kaur-l 6-ene (5)。ent-[l3,1,4a-ZH2] kaur-15-烯 (20)。以及3种甲氧基取代的异构体,其中ent-I 6-meth0xy[~H,]贝壳杉烷是主要成分。ent-l7-nor[l3.14a-2H,] kauran-16-one (6) 的桥头口烯醇化分别通过酮在用叔丁醇钾加热之前和之后氧化为内酯 (23) 和 (25) 来证明,其中 13-氢原子的不存在或存在通过 n.m.r. 光谱中 7 5.22 处的单质子多重体的存在或以其他方式显示。一些 [*H,] 二萜烯的质谱图,以及 enr-贝耶兰-15- 和 16-酮 (1, 6) 和 (17) 在位移试剂 Eu(dpm) 存在下的 n.m.r. 谱图。进行了讨论。Bristot BS8 1TSPRECEDENTS 2-4 用于桥头烯烃的形成或中间体,鼓励我们研究 e.nt-17-norkauran-16-one (1) 的 13-桥头烯醇化,作为 ent-13-羟基甲氧烷的自氧化途径的基础。自本研究完成以来,出现了许多关于正常尺寸环中桥头烯烃中间体的例子.6 一个特别相关的例子是双环[3.2.l]辛烷酮和长环烯醇中的桥头烯醇化,Turnbullet aL6 在我们的初步说明之前报道了'首先研究了去甲酮 (1) 与叔丁醇中的叔丁醇钾的直接碱催化氘化反应.回收酮质谱分析显示标记物分布如下:6% 2Ho、34.5% 2Hl、58% eH2、1.5% 2H、.用0.05~-氢氧化钠处理后,2h分布为96.5%2Ho,3.5%2Hl。三氘化物质的低百分比排除了第三个 2H 原子的明确分配到桥头位置,并且已知的 8 立体特异性 2H-1H 交换在去甲酮 (1) 的 15 位使得这些结果的解释变得困难。此外,不能排除通过高烯醇阴离子9在C-12处的氘化作用。因此,通过研究源自 ent-[13-2H]kaur-16-ene (3) 的 [13-2H]去甲酮 (2) 中的 2H-1H 交换,寻求桥头烯醇化的明确证据,后者是通过在氘代醇中重新排列 ent-beyeran-16-one 苯磺酰腙 (13) 合理合成的。起始点是ent-kaur-16-ene(4),它是从Cryj6tomeria japonica var. elegans中分离得到的。在沸腾的二甲苯中将碘异构化,得到含有70%ent-beyer-15-ene(lo)、15%ent-kaur-16-ene(4)和15%ent-kaur-15-ene(18)的混合物(参见参考文献ll),通过制备层色谱法(p.1.c.)艰难地分离。Hydroboronation of ent-beyer-15-ene (10) l2 provided the1 PartV, J. MacMillan and E. R. H. Walker, J.C.S. Perkin I,2 W. Carruthers and M. J. Qureshi, Chem. Comm., 1969, 832.R. Keese and J. P. Chen, Angew.Chem. Internat.Edn., 1971,J. R. Wiseman and W. A. Pletcher, J. Amer. Chem. SOC.,K. W. Turnbull, S. J. Gould, and D. Arigoni, J.C.S. Chem.1972, 1274.10, ,262.1970, 92, 966.6 J. Mellor, Ann. Reports (B), 1972, 69, 408.Comna., 1972, 697.15- 和 16-醇 (14) 和 (15),它们被氧化成各自的酮 (16) 和 (17)。由于碳氢化合物 (10) 和 (18) 以及醇类 (14) 和 (15) 分别为 R' R2 R3 R' ( 10 ) R' = Me, R2 = H( 1 ) Me H H 0 ( 1 1 1 R* =Me, R2=D( 3 ) M e H D CH2( A ) Me H H CH2( 5 ) Me D D C b( 6 ) M e D D D 0( 7 1 Me D H 0( 8 ) Me D D Me,OMe( 2 ) Me H D 0 t 12 I R' = C02Me, R~ =H( 9 ) Q M e H H CH,( 13 ) R'= Hz, R2=N-NH602Ph( 14) R'=H$- OH, R2 H2( I 5 1 R' = H,, R,= H.p - OH(18) R'=Me,R2=R3=H(19) R1=C02Me,#=@=H(20) R1=Me,F?=$ = D(16) R'= 0,R2=H2( 17) R'= H,,R~ =o难以分离 将-kaur-16-ene(4)直接转化为易于分离的酮(16)和(17)和ent-kauran-lhne更为经济。H. Bowen 和 J. MacMillan,Tetrahedron Letters,1972 年,8 R. Evans 和 J. R. Hanson,J.C.S.Perkin I , 1972, 2382.A. Nickon and J. L. Lambert, J. Amer. Chem. SOC., 1966,88,lo J. MacMillan and E. R.H. Walker, J.C.S. Perkin I, 1972,l1 A. Yoshikoshi, M. Kitadami.和 Y. Kitahara,Tetrahedron,la P. R. Sobti 和 S. Dev,Tetrahedron Letters,1966 年,3939.4111.1906.981.1967,28,11761975 379 中间分离。与它们的对映异构体一样,13 酮 (16) 和 (17) 的区别在于极性较低且受阻较重的 15-0x0-基团 (16) 对羰基试剂的非反应性。在位移试剂Eu(dpm)存在的情况下,它们的n.m.r.谱图也使它们感到不安。15-和16-酮(16)和(17)中甲基和CH,CO质子的观测位移(So)相对于Eu(dpm)、浓度(Lo)的最小二乘图梯度。在16-酮中,15-亚甲基质子中的一个被INDOR定位。ForSo 4 8,(底物-试剂复合物的位移),So与比值Lo的梯度:So(底物浓度)由So[Sc/(S,+ l / K)]给出,其中K是形成配合物的平衡常数。由于测量通常在相似的浓度下进行(因此约为0.1 mM),因此可以有效地比较移位梯度扫描。如果 K 较大,则梯度简化为 8,。然而,一些最近确定的 K 的 l5 值不足以忽略 1/K。因此,我们选择对相对于最小梯度的梯度进行归一化,这被视为统一。术语 So/(So + 1/K) 抵消了所有质子梯度,归一化梯度与浓度 So 无关。表 1 所示的最佳拟合并不用于表示表 1ent-beyeran-15- 和 18ones16-Ketone (16)Proton Obs. Ca1c.a16-HA 8.4 6.716-HB 8.3 6.72O-H, 6-1 6-119-Hs 1.2 1.417-H3 1.1 1.618-Ha 1.0 1.016-酮 (17)67-0 40.060-0 48.06.6 9.91-0 1.03-1 1.648.0 44.0Obs.Calc.iA@ Eu-O-C 140“;Eu-0 2 安;船构造中的环 A.b Eu-0-C 180“;Eu-0 2.7 安;环 A 在椅子构象中,最佳构象,但为了说明已获得足够的一致性来分配两种酮的甲基信号。在未络合酮的光谱中,16-酮的17质子信号处于较高的场,表明该酮中的环D被扭曲,使17-质子位于16-羰基的屏蔽区。这种扭曲将缓解 20 质子和 15 质子之间的空间相互作用。Coates 和 Bertram,16 提供了苯磺酰腙 (13) 重排为 ent-kaur-16-ene (4) 的近似类比,他们通过分解 $-tolylsulphonylhydrazone 的钠盐 (21) 获得了 ent-kaur-16-en-18-oate (9) 和差向异构 15-烯与 ent-beyer-15-en-18-oate (12) 和甲基 ent-13,16-环蒲聚糖-18-oate (22)。We** Y. Kitahara and A. Yoshikoshi, Tetrahedron Letters, 1964,14 J.K. M. Saunders and D. H. Williams, J. Amer. Chem. SOC.,A1771.1971, 95, 641.checked the composition of the phenylsulphonyl-hydrazone (13) in a variety of conditions, analysingthe products by G.1.c.和 g.1.c.-质谱0 5 0 5 0 5 10t I minG.1.c.苯磺酰腙(13)与甲醇钠分解的产物:(a)3,6-二氧杂辛烷-1-01在190“;(b) 3,6-二氧杂辛烷-L-醇,90“;及(c)甲醇。产品 : 1, ent-beyer-16-ene;2, ENT-Kaur-16-烯;3、ENT-Kaur-16-烯;4 和 6,6 的未知异构体;6、ent-16-甲氧基山苷(图)。用甲醇钠在3,6-二氧杂辛烷-l-[,HI01中190“下1 h,主要产物(35%)是非氘代的ent-beyer-l5-烯(lo),与含有约20%20%的e~tt-[~H]kaur-15-和16-烯(各4%)结合得到[图(a)]。在 90“ 2 h with@ -NH*S02C6H,Me flMe' H ' C02Me H C02Me( 21 1 ( 2 2 )( 23 ) R'= R2= D( 2 4 ) R ~ = R ~ = H(25) R ' = D , R ~ = H另一种 制备相同溶剂时,烃类的总收率为75%[图(b)],其中17%的砷-贝壳杉-16-烯含50%,HI.然而,在 bothl5 I. Armitage、G. Dunsmore、L. D. Hall 和 A. G. Marshall,Canad. J .Chem., 1972, 50, 2119.l6 R. M. Coates and E. F. Bertram, J .Org. Chem., 1971, 86,3722380 J.C.S. Perkin 伊特氧化二氮高碘酸钠在用稀氢氧化钠处理之前或之后,2H 含量没有变化(表 2),表明 ent-[2H2]kaur-16-ene 中不存在 15- 和 17-2H。去甲酮(6)氧化为内酯(23)也发生,2H含量没有变化(表2)。内酯 (23) 的 n.m.r. 谱图显示,在未氘内酯 (24) 的谱图中,在 5 5.22 处出现的 13-H 多重物不存在。15-烯(26)的中间体可以排除15-烯(26)的中间体,从而形成e~tt-[l6-~H]拜尔-15-烯(1 l)、a t -[13,14a-2H&kaur-16-ene(5)和ent-[13,14a-2H,Jkaur-15-ene(20)。该烯胺的立体特异性 15-氘化反应,然后酸催化分解 l7 将提供离子 (27)。后一种离子可以通过 W2H 的立体特异性损失产生 ent-[16-2H]beyerene(11),也可以重新排列到离子 (28) 中,从而产生 ent-[13,14a-2H2]kaurene~ (5) 和 (20)。甲醇捕获离子 (28) 可以解释 ent-16-甲氧基-C2H&贝壳烷的形成 (8)。然而,甲醇对离子(27)的类似捕获并不能解释ent-meth~xy[~H,]kaurane的两种异构体中的任何一种的形成。两者的质谱碎片与用甲醇和硫酸处理的两种产物的质谱碎片不同,且结构未知。通过在叔丁醇中用丁醇钾加热,证明了 ent-17-nor[13,14a-2H2]-kauran-16-one (6) 中的桥头烯醇化。本实验中使用的去甲酮是通过苯磺酰腙(13)的重排获得的,其标记分布如下:4%2H,,51%2Hl和45%2H2(表2)。用碱处理后,去甲酮 (7) 明显交换了一个 2H 原子(表 2)。该交换显示在 13 位氧化为内酯 (25),其 nmr 光谱显示 13-氢原子在 7 5-22 处的单质子多重体。Evans 和 Hanson 已经证明,ent-kaur-16-ene (4) 和 ent-17-norkauran-16-one (1) 质谱中的 M+ - 43 离子是由环 D 丢失形成的。他们认为,这种碎裂还涉及 9-氢原子的转移以及 14-氢原子之一的转移,在碳氢化合物 (4) 的情况下,或者在酮 (1) 的情况下,与未指定的氢原子的转移。M+和M+-43离子的ZH含量比较(表3)表明,ent-kaur-16-ene和nor-ketone中ent-14a-2H部分丢失,ent-kaur-16-ene中13-2H也部分丢失。数据还表明,ent-[13,14a-2HJkauran-lEi-酮中的M+-43离子不涉及氘的损失;另一方面,该化合物碎片中的M+-58离子似乎涉及一个2H原子的立体特异性损失,可能在14.17位置J.W.Powell和M.C.Whiting,四面体,1969,7, 306.18 J.M.考克森、M.P.哈茨霍恩、D.M.柯克和M.A. Wilson,四面体, 1969, 25, 3017.温度 ent-kaur-16-ene的收率从0%到20%不等;由于氘代溶剂制备困难,2H掺入量也很低且变化很大。正如预期的那样17J*,使用低酸性醇,如丙-2-01和叔丁醇,几乎完全产生ent-拜尔-15-烯(lo),大概是通过卡宾。在甲烷-[2H]醇中加入甲醇钠[图(c)],与三种异异构甲氧基化合物一起得到几乎等量的碳氢化合物,其中ent-l6-metho~y[~H&kaurane(8)是主要产物。这些产品的2H含量见表2;掺入表 2gH 含量 (yo) a of en&[ 13, 14a-2H,]kaur-16-eneand related compoundsCompound 2H, 2Hl 2H26 38 576 37 6619 79 26 38 676 36 596 36 694 61 4643 62 642 61 7(6)(20)(11)( 6)(6)(23)(6)( 7)(26)'10次质谱扫描的平均值;修正为 1%.c ent-kauranes 中的第二个氘原子是出乎意料的,稍后将讨论。产物中2H原子的位置由以下数据确定。通过p.l.c.从甲氧基化合物中分离出来的烃混合物[图(c)],在硅胶-硝酸银层上进一步分馏,得到ent-[2HJ-kaur-16-ene和ent-[2H,]beyer-15-ene和ent-[ZHJ kaur-15-ene的2:1混合物。后一种混合物被氢化硼化,然后氧化得到酮的混合物,通过g.1.c.质谱分析。2H 原子保留在 &6 酮 (16) 中,但不保留在 16-酮 (17) 中,表明 ent-beyer-15-ene含有 16-2H 原子。此外,ent-[16-2H]beyer-15-ene(11)和ent-[2H2]kaur-15-ene混合物的n.m.r.谱没有显示ent-beyer-15-ene(lo)的AB-乙烯基质子信号的高场质子(7,4.60),而(10)的低场质子(T 4.33,J 6 Hz)在(1,1)的情况下作为宽单重态(T 4.32)存在。因此,(10)光谱中较高的场乙烯基双峰是由于16质子。n.m.r.的比较EAT-kaur-15-ene(18)与ent-[2HfJ-kaur-15-ene与ent-[16-2H,]beyer-15-ene(1,1)的光谱显示以下显著差异。分配给 l&质子的 T 7-63 处的多聚物在 2H2 化合物的光谱中不存在。此外,双重态(7 7.82, J 11 Hz)被分配到ent-kaur-15-ene(18)中的ent-14a-质子,因为与13-质子(0 ca. 90“)没有进一步的偶联,在2H2化合物的光谱中作为宽单重态出现。从这些事实中,ent-[13,14a-2HJkaur-15-ene(20)被鉴定为产物之一。ent-[2H2]kaur-16-ene中存在13-2H原子的建立如下。用锇氧化8 用氢氧化钠水溶液处理后制备1975表 32H 端端-[13,14a-2H2]kaur-16-ene和相关化合物的一些碎片离子的含量a化合物离子2H,3H,2H,M+ 6 36 57M+ - 16 4 39 57M+ - 43 25 60 25M+ 3 37 59M+ - 15 3 42 661M+ - 43 9 53 35A f t 43 62 5M+ - 15 46 61 3M+ - 43 62 32 6ent-Kauran-16-one M+ 10 37 63M+ - 15 17 36 48M+ - 43 17 34 49M+ -58 10 83 7t 5 )(6)( 7)每种化合物的单次质谱扫描数据mle 246、245和244处的显著离子出现在ent-beyeran-&1(16)和16-2H衍生物的光谱中,具有相同的相对丰度,并且清楚地表示环D的损失与无、一个和两个氢原子的转移。实验一般实验细节见Part II.l0 G.1.c。-质谱分析按照参考文献19.For g.1.c.所述进行。和 g.1.c.-质谱法 2% SE-33 色谱柱通常用于等温 a t 181”。ReZative Shift Gradients.-对于远质子 (Hd),测量距离 Hd * * - 0 (a)、相对位移梯度 (= l) 以及 Eu - - Hddistance ( r ) 和 Eu .* - 0 距离 (b) 的试验值用于从表达式 (i) 计算 K。依次考虑 K[3(r2 + b2 - - 4b2r2](i) 4b2r6 Shift (s) =剩余质子的 s 和 a 值。对于下限和递增到上限之间的值,计算值 s。如果 s 的观测值介于 s 的两个连续计算值之间,则其中一个计算出的 s 值与相应的值 Y 一起打印出来。因此,得到了一组r值,该值与质子Hd的波段Y试验值的观测数据最拟合。如果观测值 s 位于转折点上,则可能会遗漏;为了避免这种情况,使用表达式(ii)打印出相关的转折点。Y (在转折点)= &[bz + 3a2 f 2(a4 - a2b2 + b4)*]1“ (ii)将 ent-17-Norkauran-16-酮 (1) .-噻吩酮 (45 mg)、叔丁基[2H]醇 (1 g) 和丁醇钾 (1 g) 在密封管中加热 t 140” 6 天。加入氧化氘(0.9ml)后,将产物在乙酸乙酯中回收,并用p.1.c.on硅胶与轻石油丙酮(4:1)纯化。在0-5-0-7的带中,得到[2H]去甲酮(l),它由甲醇在针(40 mg)中结晶,熔点为117-1 18O,同位素分布6% 2H,,34.5% ZH,,58% 2H2,1.5% 2H3;将 m/e 277 (7.5y0)、276 (36)、275 (20)、274(3)、262 (9)、261 (49)、260 (25)、231 (17)、123 (93) 和 43 (100).ent-Beyer-15-ene (ent-l3-MethyZ-l7-nor-8P, 13P-kaur-15-me) (lO).-ent-Kaur-l6-ene (4) (500 mg)、二甲苯 (300 ml) 和碘 (ca.200 mg) 煮沸 20 11.将混合物用硫代硫酸钠水溶液(3×60无)和水(3×50毫升)洗涤,然后干燥并减压蒸发,得到黄色油。此产品,由 g.1.c. 显示。含有 70% 的 Eutt-Beyer-15-烯 (Lo)、16% 的 Ent-Kaur-15-烯 (18) 和 15% 的 Ent-Kaur-16-烯 (A),通过 P.1.C 进行压裂。在硅胶上-lOyo硝酸银与苯-轻质石油(3:2)。在相同条件下重复从细长区下部回收的材料的复色分析,直到ent-beyer-15-ene(10)(200mg),m.p.ca。30°,根据 G.1.C 判断,不含 ENT-Kaur-15-ene (18)。(发现: IMf,272.250. 计算值 C20H32: M , 272.250) ;T 9-26、9.20、9-17和9.02(各3H,s)、4.60和4.32(d,J 6 Hz,15-andent-Beyeran-15-mzd 16-02s[(14)和(15)].-ent-Beyer-15-ene(200mg)在四氢呋喃(50ml)中用过量的硼氢化钠和三氟化硼醚络合物处理。室温16 h后,加入3~-氢氧化钠(1 ml)和双氧水(5 mi;30% v/v),继续搅拌0.5 h。从蒸发得到的残渣中回收乙酸乙酯,得到胶,用p.1.c分离。在硅胶H F上用轻石油乙酸酯(9:1)得到:(a)更极性的ent-beyemn-16-oZ(15),由乙酸乙酯针结晶,m.p.98-101“(发现:M+,290.261。C,H,,Orequires M , 290.261);T 9-20、9.15、9.11 和 9.07(各 3H、s)和 6-30(lH、d、J 6 Hz);(b)极性较低的15-醇(14),T 9.18,9.14,9.05和9.02(各3H,s)和5.72(4H,d,J 6Hz),其特征在于氧化为15-酮(16)(见后文).ent-Beyeran-16-0ne(1 7).-16-醇(15)(70mg)用过量的Jones试剂氧化15分钟。通常的检查结果为16-酮(17),由针头(70mg)中的轻质石油结晶而成,熔点为103-104“(对映异构体为13 m.p.,102-103”)(发现:C,83-7;H,11.0%;M+,288.245。C,,H,,O 需要 C, 83.5;H,11.1%;米,288.245);vmK (CHCI,) 1735 cm-l;T 9.19(18-H3)、9.14(19-H3 和 20-H3)、9-04(17-H3)、8.34(15-HB、J 18 Hz)和 7.31(15-HA、J 3 和 18 Hz);m/e 288 (62y0)、273 (68)、246 (12)、245 (38)、244 (24) 和 123 (100).ent-Beyerafi-15-om (16) .-15-醇(l4)在先前的实验中被氧化成15-酮(16),在针中由甲醇结晶,m.p.88-89'(lit.13 m.p. forenantiomer,88-89°)(发现:C,83.5;H,11.4。C,,H,,O需要C,83。3;H,11.1%);T 9.22 (20-H,)、9-18 (18-H8)、9.16 (19-H3)、8.96 (17-H3)、8.14 (16-HB、J 19 Hz) 和 7-86(16-H~、J 3 和 19 Hz);M/E 288 (52%)、273 (31)、246 (16)、245 (20)、244 (23) 和 123 (100)。ent-Beyerart-15-和1的常规制备&ones froment-Kaur-16-ene.--常规使用以下典型程序。由ent-kaur-16-ene(1.3 g)和碘(1.0 g)在二甲苯(500 ml)中的反应产物(910 mg)通过p.1.c.on硅胶-10%硝酸银(0.4 mm)和轻质石油苯(4 : 1)从未改变的ent-kaur-16-ene中游离出来。下部得到ent-beyer-15-ene和ent-kaur-15-ene(536 mg;2 : 1 g.l.c.)的混合物,将其直接在四氢呋喃(40 ml)中与硼氢化钠(520 mg)和三氟化硼-醚络合物(5 ml)加氢硼化。将所得的醇混合物(764mg)在丙酮(50ml)中与Jones试剂(2ml)氧化,得到通过p.1.c分离的产物。在硅胶H F(0.3mm)上,用轻质石油丙酮(99:1)多次洗脱。从下带 ent-beyeran-16-one19 J.R. Bearder、J. MacMillan 和 B. 0.Phinney, Phyto-chemzstry, 1973, 12, 2655.16-H.) J.C.S. Perkin I(200 nig)通过乙酸乙酯萃取,然后从甲醇L中结晶,从上带回收乙酸乙酯得到结晶固体(232mg),通过制备剂g.1.c将其分离成ent-贝氏-15-酮(1 13mg)和耐盐酰-l5-酮(18mg)。(2% SE 30;12 英尺 X # 英寸;230 ---c. 250° a t 2“ min-1)。ent-Beyeran-16-酮苯磺酰羟肼(13).-16-酮(17)(65mg)在甲醇(5ml)中与苯磺酰肼(120mg)煮沸6小时。本品经p.1.c纯化。在硅胶 HI 上?(0.4 mm)与轻石油丙酮(3:1)得到磺基腙(13)作为针头(80mg),m.p.199201O(分解)(发现:C,70.1:H,8.7。C2,H,,N20,S需要C,70.5;H,8.6%);v , ~ ~ (CHCl,) 1710, 1370, 和 1170 cm-l.在相同的条件下,ent-beyeran- 1 !?-一 (16) 保持不变。ent-Beyeran-16-酮苯磺酰腙(13).-(a)I n 3,6-dZoxao~tan-l-[~Hjol在190“.将腙(5mg),甲醇钠(5mg)和3,6-二氧辛烷-1-[2H]ol(0.5ml;通过从钠衍生物和氧化氘的混合物蒸馏制备)在190“下加热1小时。在混合物中加入水,然后用乙酸乙酯萃取。从提取物中回收得到的胶质显示含有efit-kanr-16-ene(41,ent-kaur-15-ene(1 8)和ent-beyer-1和ene(10),比例为1:1 10,按g.1.c。[图(a)]和通过g.1.c.-质谱法,通过p.1.c对该混合物进行分馏。25%硝酸银与苯轻质石油(3 : 2)的硅胶凝胶,在Rp 0-7处从条带回收得到ent-kaur-16-ene(4);m/e 274 (4%)、273 (17.5)、272 (35.5) 和 43(100);78.5% 2H0 和 21.5% 2Hl。从 a t RF0.2 带回收得到 ent-beyer-15-e (10) 和 enb-kaur-15-ene (18) 的混合物。将腙(5mg),甲醇钠(5mg)和新制剂的氘代二氧辛醇(0-5ml)加热90“2小时。(c) I n propan-Z-oZ。将腙(0.5mg),甲醇钠(0.5mg)和丙-241(0.4ml)在密封管中加热95“€或12小时。加入水并用乙酸乙酯外加,得到的产品主要含有ent-beyer-15-ene(10)(g.1.c.在185“)。在之前的实验中,用叔丁醇代替丙-2-01得到了类似的结果。将腙(60mg),甲醇钠(80mg)和甲醇[2H]ol(2ml)在密封管中加热t95“16小时。如(a)所示的检查得到口香糖(50mg),其组合物如图(c)所示(通过g.1.c.)。P.1.c.将这种胶胶与轻质石油丙酮(9:1)放在硅胶上,得到烃类馏分(10mg;RF 0.7)和分数(25mg;RF 0.5-0.6) 由 g.1.c 显示。(2%SE-33;185“)和g.1.c.质谱(2% OV-1;188”)含有三种异构体化合物(M+ 396),其中主要成分(80%)被鉴定为ent-16-甲氧基-贝壳兰(8)(4%*Ho,41%2H,,55%2H2)通过与真实标本的比较(n.m.r.和质谱)。另外两种含甲氧基异构体的2H含量相似,它们显示出相似的碎裂途径,碱基峰为245。烃类馏分进一步分馏了二氧化硅凝胶-lO%硝酸银层,由苯zo L. H. Briggs, R. C. Carnbie, B. R. Davis, P. s. Rutledge, andJ.K. Wilmhurst, J. Chem. SOC., 1963, 1346.(b) I n 3,6-二氧辛烷-l-f2Hjol,90”。(d) I n 叔丁醇。(e) I n methan[2H]oZ.轻质石油。上带 (RF 约 0.6) 得到 ent-[13,14~t-~H,]kaur-l6-ene (5) (3 mg)。下带 (RFca. 0.2) 给出了 g.l.c.、g.1.c.质谱法显示的混合物 (3 mg),n.m.r.to 含有 33% 的 ent-l3,14at-[2HJkaur-15-ene (20) 和 67% 的 e~t-[l6-~H]beyer-l5-ene(11)。该混合物(2.3mg)与过量的硼氢氢氢化钠和三氟化硼-醚络合物,然后进行琼斯氧化,得到g.1.c.质谱法显示的产物,含有等量的ent-beyeran-15-one(19%2H0,81 yo SH),ent-beyeran-16-one(1OOyo 2Ho)和ent-kauran-15-one(10% 2H0,36% 2Hl,53% 2H2).ent-17-Nm~13,14~t-~H~]kauran-l6-one (6).-ent-kauran-16-ene(2mg;38% 2H2)在四氢呋喃(0.5ml)和水(0.5ml)与四氧化锇(2mg)和高碘酸钠(50mg)。回收乙酸乙酯得到去甲酮(6),m.p.116-117“(lit.,20 117”);39% 2H1, 57% 2H2;M/E 277 (12Y0)、276 (65)、275 (41)、262 (12)、261 (65)、260 (44)、234 (4)、233 (14)、232(16) 和 123 (100)。未氘代酮显示 m/e274 (loo%)、259 (86)、231 (23) 和 123 (88)。在甲醇(5ml)和0-1N-氢氧化钠(5ml)中回流后,定量回收CeHJnor酮(2mg),2H含量不变。Bayer-VilZiger ent-17-Norkauran-16-0ne.-(a) 含有甲苯对磺酸(1mg)的氯仿(2ml)中未氘代的去甲酮(15mg)与全苯甲酸被氧化,如Hanson 21所述,得到内酯(24)(15mg),m.p. 146-147“(lit.,21 147-148');7 9.18、9.14、8.94(各3H、s)、7.80(15-H2)和5.22(m,13-H);M/E 290 (23%)、285 (ll)、234 (171、231 (l l) 、123 (36) 和 41 (100)。b)二氯甲烷(10ml)中的去甲酮(2mg;39%2H1,57%2H,)用三氟乙二酸酐和90%过氧化氢(0.17ml)氧化,如Briggs等人所述22 p.1.c分离产物。在硅胶上用轻石油丙酮(9:1)得到不变的去甲酮(20%;RF 0.4)和内酯(23)(80%;RF0.2),2H 含量不变(g.1.c.-质谱法),并且在累积 (x 20)n.m.r. 光谱中没有显示低于 7 7.76 的信号。(c)将去甲酮(2 mg;43%2Ho,52%2H1,5%2H,)氧化纯化,得到2H含量不变的内酯(25)(g.1.c.-质谱法),并在累积(x 40)n.m.r.光谱中显示单质子倍数a t 7 5.22 (13-H)。处理ent-17-Nor[ 13,14~-~H~]kauran-l &one &hBase.--将去甲酮(3mg;51%2H1,45%eH)在密封管中用叔丁醇(3ml)和叔丁醇钾(100mg)加热100“48小时。加水后,将去甲酮在乙酸乙酯中回收,并经p.1.c纯化。如前所述。G.1.c.质谱分析显示同位素分布:43%2H,,52%2H,5%2H2。感谢 S.R.C. 提供研究奖学金(toD.H.B. 和 C.C.)以及用于购买 G.E.C.-A.E.I. 的研究资助。MS30仪器,采用全磨碎气相色谱法。[4/1808 收稿日期,19743 年 9 月 2 日PL J. R. Hanson, J. Chem. Soc., 1963, 5061.29 L. H. Briggs, R. C. Cambie, and P. S. Rutledge, J. CLm-SOC., 1963, 6374

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号