...
首页> 外文期刊>Acta materialia >On the dynamically stored energy of cold work in pure single crystal and polycrystalline copper
【24h】

On the dynamically stored energy of cold work in pure single crystal and polycrystalline copper

机译:On the dynamically stored energy of cold work in pure single crystal and polycrystalline copper

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The thermo-mechanical response of single crystal and polycrystalline high purity copper is systematically compared at low and high strain rates. The mechanical response of each type of material is very different in terms of strain hardening, although both are distinctly strain rate sensitive. A simplified interpretation of the Taylor-Quinney coefficient, in which the strain dependence is not considered, shows a clear (almost linear) increase of this factor with the strain rate, while the two types show distinct trends. This factor increases with the strain rate but remains markedly lower than the classical value of 0.9. The stored energy of cold work is found to be relatively independent of the strain rate, with the polycrystal storing more energy than the single crystal. A microstructural study (transmission electron microscopy) of representative specimens of each type at low and high strain rates reveals a basically similar microstructure, despite dissimilar values of energy storage. It is proposed that a higher level of storage of the energy of cold work by polycrystalline copper is due to the presence of grain boundaries in this group.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号