首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >A phenanthrolinoquinomethane: synthesis and study of precursors
【24h】

A phenanthrolinoquinomethane: synthesis and study of precursors

机译:菲喹啉甲烷:前体的合成和研究

获取原文
获取外文期刊封面目录资料

摘要

J. CHEM. SOC. PERKIN TRANS. 1 1995 A phenanthrolinoquinomethane: synthesis and study of precursors Noemie Fixler, Hervk Salez, Martine Demeunynck * and Jean Lhomme * LEDSS, Universitt J.Fourier, BP53, 38041 Grenoble Cedex 9, France Two quinomethane precursors: the ortho-hydroxylated methyl ether 6 and the diacetate 8 have been prepared from 1,3)benzodioxino5,6-b 1,7phenanthroline 2. The quinomethane intermediate 4 has been trapped by reduction, nucleophilic addition and 4 + 21 addition with ethyl vinyl ether. ortho and para Quinomethanes have been extensively studied in the past few years.' Such species have been used as key intermediates in the total synthesis of natural products2 and are involved in various biological and toxicological processes. Quinomethane intermediates have also been postulated as being formed during the biotransformation of several drugs and xenobiotic~.~ Recently Li et al.have used quinomethane precursors supported on oligonucleotides for selective modific- ation of DNA.' These highly reactive species are most fre- quently generated in situ by thermal degradation of ortho phenolic Mannich Bases and o-hydroxybenzyl alcohols ' or by oxidation of alkylphenols.8 New methods for generating quinomethanes have also been published more re~ently,~ starting from benzotriazolylalkylphen01,~"alkylsulfanylalkyl-phenol 9c or trimethylsilyl derivatives. 9d In the course of a programme devoted to the search for new anticancer drugs, we have developed a series of benzob- 1,7phenanthrolines substituted at position 10." As part of this work the 10-hydroxybenzob 1,7 Jphenanthroline 1 has been prepared, its reactivity has been studied and a number of derivatives have been obtained.In particular, the position a to the OH group (C-11) appeared to possess a high reactivity with electrophilic species. In the search for drugs possessing both affinity for DNA and alkylating properties, we have devised molecules that incorporate a quinomethane precursor moiety into the benzophenanthroline polycyclic system, which exhibits good affinity for DNA. As far as we know, little has been published on the reactivity of heterocyclic o-quinomethanes.I2 The 1,3- dioxine 2 appeared to be a good candidate for an entrance into the series as the cleavage of the acetal ring could generate bifunctional molecules such as 6 and 8 as possible quino- methane precursors.We report here the synthesis of 1H-l,3benzodioxino-5,6-b 1,7phenanthroline 2, the preparation of the stable quinomethane precursors 6 and 8 and the study of their chemical reactivity. Results and discussion synthesis of tbe 1,3-beazodioxine 2 A common method to prepare 1,3-benzodioxines is a two-step procedure consisting of the hydroxymethylation of a phenol derivative with formaldehyde in a basic medium followed by cyclization. Treatment of phenol derivatives with formalde- hyde in acidic media has also been used but usually yields are low and many by-products are formed resulting from dimerisations or polycondensations.l4 Treating 1 with formaldehyde in basic conditions (1 mol dm-3 NaOH) yielded insoluble products.In contrast, reaction of a large excess of formaldehyde with the hydroxy derivative 1, performed in methanesulfonic acid gave the dioxine 2 in 70 yield (Scheme 1). The structure of 2 was determined by 'H NMR and mass 678 07 6 Scbeme 1 spectrometry. In the NMR spectrum, the OH signal, present in 1, had disappeared and two singlets at 6 5.42 and 5.48, each integrating for two protons, indicated the existence of the 1,3-dioxane structure. The reaction was totally regioselective, no product resulting from reaction at position 9 could be detected by HPLC analysis of the reaction mixture.7 Opening of the dioxine ring To obtain the 10-hydroxy-1 I-hydroxymethyl derivative 3, the direct precursor of the quinomethane 4, we used the strategy proposed by Kaslow and Raymond (Scheme 2).' These 3 Scbeme 2 authors have shown that the dioxino5,4-flquinoline ring system is resistant to hydrolysis in dilute acid medium, in concentrated hydrochloric acid however the dioxine ring could be opened to give a diquinolylmethane derivative.The authors trapped the hydroxymethyl intermediate by carrying out the reaction in a mixture of acetic anhydride-sulfuric acid and obtained the diacetate derivative which was subsequently deacetylated by sodium ethoxide in ethanol. In a similar way, heating compound 2 in an acidic medium (methanesulfonic acid-water) gave as the major product a compound that was almost totally insoluble in all solvents used.This insolubility prevented any correct NMR analysis. However mass spectrometry indicated a molecular mass of 504. By analogy with data reported in the we propose the 1 1,ll '-methylenebis(hydroxybenzobphenanthroline) struc-ture 5 that accounts for the indicated mass. The same type of bridged structure has also been described in the acridine series. It was obtained by heating 3-hydroxyacridine with formalde- ~~ t This regioselectivity of the aromatic electrophilic substitution on compound 2 was confirmed by the result of a proton-deuterium exchange in acidic medium studied by 'H NMR.In a deuteriated trifluoroacetic acid-water (1 :1) mixture the only exchange takes place at position 1 1.The half-life was estimated to be 1 h at 65 "C. J. CHEM. soc. PERKIN TRANS. 1 1995 hyde in the presence of sodium acetate. 15' Dioxine ring opening H'MOH' to generate the diacetate 8, was accomplished by treating compound 2 with methanesulfonic acid in a mixture of acetic r-9 acid and acetic anhydride (Scheme 3). Compound 8 was I CHOH2 6 6 + 7'Nmob 0 OAC 8 Scheme 3 isolated in 75 yield. The 'H NMR spectrum was characterized by two singlets at 6 1.99 and 2.41 corresponding to the two acetyl groups (benzylic and phenolic, respectively). The diester 8 was easily purified by column chromatography. Carrying out the solvolysis of 2 in methanesulfonic acid in the presence of methanol gave the methyl ether 6 in 80 yield.The corresponding quaternary compound 7 was isolated as the methyl sulfate as a by-product. This compound was identified by comparison with an authentic sample obtained by methylation of the methyl ether 6. Reactivity of compounds 6 and 8 The methyl ether 6 appeared to be stable in 1 mol dm-3 NaOH. Under acidic conditions (methanesulfonic acid-acetic acid, I : 1, 70 OC, overnight), the methyl ether 6 slowly decomposed to give the bridged compound 5 as the main product as indicated by mass spectrometry. Both under acidic (1 mol dm-3 HCl) and basic conditions (1 mol dm-3 NaOH), the diacetate 8 rapidly disappeared to give compounds that could not be analysed by HPLC or TLC. Again, we can assume that the methylenebisbenzophenanthroline 5 was predominantly formed in these conditions as it is known from the liter- ature 156.14~.16 that o-hydroxymethylphenols rapidly decom- pose under basic or acidic conditions to give methylene-bridged structures.Using sodium borohydride, a method described to deprotect selectively a phenol acetate in the presence of a benzyl acetate," we obtained a new compound 9 (Scheme 4). The 'H NMR spectrum was characterized by a singlet at 6 2.68 integrating for three protons indicating that the benzylic acetate has been reduced to a methyl group. In a nucleophilic solvent, i.e. in methanol, the diacetate 8 slowly hydrolysed and the final product was identified as the methyl ether derivative 6.Heating 8 overnight at 50 "C in methanol gave 6 in quantitative yield. 10 Scheme 4 In an attempt to trap the postulated quinomethane intermediate, the alkaline hydrolysis of diacetate 8 was performed in the presence of ethyl vinyl ether.18 The reaction proceeded slowly in acetonitrile at room temperature. TLC and HPLC analyses indicated that a new product was formed along with tars. It was isolated in 17 yield and identified as the cyclic compound 10. In the 'H NMR spectrum, all the methylenic protons, resonating between 6 3.2 and 4.0, appeared as complex multiplets due to the fact that they are diastereotropic. The acetalic proton was identified as a triplet at 6 5.42 and the methyl protons of the ethoxy group as a triplet at S 1.22.In conclusion, we have prepared different precursors of the 10-hydroxy-l l-hydroxymethyl derivative 3: the methyl ether derivative 6 and the diacetate 8. All the reactivity data can be interpreted as involving the intermediacy of a quinomethane intermediate 4. In acidic or basic conditions both compounds 6 and 8 decompose to give the bridged molecule 5. The postulated quinomethane intermediate 4 has been trapped by a 4 + 2 cycloaddition with ethyl vinyl ether. The strong electrophilic character of this intermediate also accounts for the nucleophilic addition of methanol or hydride on the benzylic carbon, to give respectively derivatives 6 and 9.19 From a mechanistic point of view, it seems reasonable to consider that in an acidic medium, solvolysis of the methyl ether 6 gives the protonated quinomethane 4-HC1, which immediately decomposes in the absence of nucleophiles to give 5. Hydrolysis in basic conditions of a diacetate derivative (6-acetoxy-5-acetoxymethylquinoline)has been previously used in the literature to prepare a 6-hydroxy-5-hydroxymethyl-q~inoline;'~' this compound was isolated in good yield.In the present case however we have not been able to isolate the corresponding dihydroxy derivative 3 by hydrolysis of the diacetate 8, even when working under very mild conditions. Two hypotheses can be proposed for this: either a very high reactivity of compound 3 that transforms instantaneously into the quinomethane intermediate 4, or direct formation of the quinomethane from compound 8 as shown in Scheme 5.In any case, the quoted derivatives in the present series appear to be much more reactive than most of the analogous compounds already described in the literature.' This high reactivity 3714c added to the affinity of the phenanthroline skeleton for DNA could confer to this series interesting properties as DNA modifying agents.$ $The affinity constant was measured on calf thymus DNA by the displacement of ethidium bromide technique. A 6 x lo3 dm3 mol-' affinity binding constant has been found. J. CHEM. SOC. PERKIN TRANS. 1 1995 8 3 + NuOAc 9 Hybide 6 Nudeophileaddiihaddition Experimental General methods 13C NMR spectra were recorded on a Bruker AM 300 spectrometer using 2H,dimethyl sulfoxide (2H,DMSO) (6, 43.5 ppm) or CDCl, (6, 77.0 ppm) as internal reference.'H NMR spectra were recorded on Bruker AM 300, AM 200 or AM 400 spectrometers using 'H,DMSO (6" 2.49 ppm) or CDCl, (dH 7.24 ppm) as internal reference. All J values are given in Hz. Mass spectra were obtained on Varian MAT311 and AET MS30 spectrometers. IR spectra were obtained on 298 and 1320 Perkin-Elmer spectrometers as KBr pellets. Column chromatography was carried out using Kieselgel 60 (Merck) silica gel. Melting points were recorded on a Totoli melting point apparatus and are uncorrected. Elemental analyses were performed by the 'service central de microanalyse du CNRS'. UV spectra were recorded on a Perkin-Elmer Lambda UV-VIS instrument.1H-1,3Benzodioxino5,6b 1,7phenanthroline2 A solution ofcompound 1 (0.15 g, 0.6 mmol), paraformaldehyde (0.06 g, 2 mmol) and methanesulfonic acid (4 cm3) was stirred at room temperature for 30 min. The mixture was then added dropwise to a mixture of dichloromethane-aqueous ammonia- ice (1 :0.05 :0.15). The organic layer was separated, dried, concentrated and directly purified by silica gel column chromatography (gradient elution: dichloromethane-ethyl acetate) to yield compound 2 as a pale yellow solid (0.129 g, 75), mp 219 "C (Found: C, 74.8; H, 4.05; N, 9.9. Calc. for C,,H,,N,O,: C,74.99; H, 4.2; N, 9.72); A,,,(EtOH)/nm 255 (/dm3mol-' cm-' 44600), 296 (29 800) and 309 (34 100); vmax(KBr)/cm-' 3420, 301 0,2900, 1640, 1620, 1590, 1480, 1440, 1400, 1290, 1250, 1200, 1150, 1100, 1020, 980 and 830; SH(3O0 MHz; 2H6DMSO) 5.2 (2 H, s, OCH,O), 5.48 (2 H, s, ArCH,O),7.25(1 H,d, J9.1,5-H),7.68(1 H,dd, J8.2and4.4, 12-H),7.79(1H,d,J9.2,9-H),7.98(1H,d,J9.01,6-H),8.06(1 H, d, J9.2,8-H), 8.89 (1 H, s, 7-H), 8.97 (1 H, dd, J4.4 and 1.7, 1 l-H) and 9.44 (1 H, dd, J 8.2 and 1.7,13-H); m/z(El) 288 (50, M'), 258 (100, M -CH,O) 230 (56) and 203 (35).Reaction of compound 2 under acidic conditions: formation of 11,l1'-methylenebis(benzob 1,7phenanthrolin-lO-ol) 5 A solution of compound 2 (0.6 g, 2.1 mmol), methanesulfonic acid (60 cm3) and water (60 cm3) was heated at 70 "C for 10 h. The mixture was then cooled to room temperature, basified with aqueous potassium carbonate and washed with dichloro- methane.The emulsion thus formed was dissolved in methanol and concentrated. Compound 5 was precipitated as a yellow solid (0.4 g, 80), mp 320 "C (Found: C, 72.3; H, 4.1; N, 9.9. Calc. for C3,HzoN,O2*2.5 H20: C, 72.12; H, 4.58; N, 10.19); A,,,(EtOH)/nm 219 (4dm3 mol-' cm-' 23 OW),238 (25 OW), 258 (42 900), 298 (27 900), 310 (23 300), 335 (9200), 352 (7200), 380 (6600) and 396 (3000); v,,,(KBr)/cm-' 3000, 1600, 1570, 1475, 1420, 1380, 1270, 1240, 1085, 975, 915 and 790; m/z (DCI/NH3/Bui) 505 (loo, M' + 1) and 259 (94, -C16H9N2). Reaction of compound 2 in acidic methanol: formation of 10- hydroxy-1 l-methoxymethylbenzo b 1,7phenanthroline 6 and 10-hydroxy-1l-methoxymethyl4methylbenzob 1,7 -phenanthrolin4ium methyl sulfate 7 A solution of compound 2 (0.108 g, 0.38 mmol) in methanesulfonic acid-methanol (2 cm3, 1 :1, v :v) was heated at 70 "C for 10 h.The mixture was then cooled to room temperature, treated with saturated aqueous sodium hydrogen carbonate and extracted with dichloromethane. Compounds 6 and 7 were precipitated by the addition of diethyl ether- hexane. The crude solid was stirred in ethyl acetate and the insoluble compound 7 was filtered off (10). The filtrate was concentrated and upon dilution with diethyl ether compound 6 was precipitated as a yellow solid (0.080 g, 80).Compound 6: mp 145 "C (Found: C, 74.3; H, 4.75; N, 9.6. Calc. for ClgH14N,02: c, 74.47; H, 4.86; N, 9.65); A,,,(EtOH)/nm 258 (/dm3 mol-' cm-' 51 800), 298 (32 300), 310 (39900), 337 (8500), 350 (5800), 380 (5100) and 399 (4700); v,,,(KBr)/cm-' 3020, 2920, 2640, 1630, 161 0, 1570, 1540, 1470, 1430, 1400, 1360, 1280, 1240, 1220, 1150, 1110, 1080, 1050, 1OOO,900,820,790 and 720; dH(300 MHz; CDCl,) 3.62 (3 H, s, OCH,), 5.61 (2 H, s, ArCH,O), 7.18 (1 H, d, J9,9- H), 7.53 (1 H, dd, J 8.2 and 4.5, 2-H), 7.73 (1 H, d, J 9, 8-H), 7.80 (2 H, m, 5-H and 6-H), 8.39 (1 H, s, 7-H), 8.94 (1 H, dd, J 4.5and 1.6,3-H),9.35(1 H,s,OH)and9.46(1 H,dd,J8.2and 1.6, 1-H); m/z (EI) 290 (31, M'), 275 (100, M -CH,) and 258 (35, M -CH3OH).Compound 7: mp > 230 "C; v,,,(KBr)/cm-' 3430, 3080, 1610, 1470, 1420, 1310, 1190, 1060,790 and 780; 6,(200 MHz; CDCl,) 2.29 (3 H, s, CH,SO,-), 3.42 (3 H, s, OCH,), 4.70 (3 H, s, N'CH,), 5.27 (2 H, s, ArCH,O), 7.56 (1 H, d, J9,9-H), 8.2- 8.4(3H,m),8.74(1 H,d, J9.6,6-H),9.24(1 H,s, 7-H),9.50(1 H, d, J 5.9, 3-H), 10.35 (1 H, d, J 8.2, 1-H) and 10.91 (1 H, s, OH); m/z (DCI/NH,/Bu') 291 (loo, M + H+ -CH,), 275 (10) and 259 (3).10-Acetoxy-1 l-acetoxymethylbenzob 1,7phenanthroline8 A mixture of compound 2 (0.45 g, 1.56 mmol), methanesufonic acid (1 2 an3),acetic acid (1 2 cm3) and acetic anhydride (6 an3) was heated at 70°C for 9 h. The mixture was then cooled to room temperature, treated with saturated aqueous sodium carbonate and extracted with dichloromethane. Compound 8 was precipitated by the addition of diethyl ether-hexane and isolated as a pale brown solid (0.42 g, 75), mp 21 5 "C (Found: C, 69.7; H, 4.5; N, 7.6.Calc. for C21H,,N,O,: C, 69.99; H, 4.47; N, 7.77); A,,,(EtOH)/nm 218 (/dm3 mol-' cm-' 33 loo), 251 (48 750), 291 (34 loo), 301 (44600), 342 (6900), 358 (5250) and 377 (3300); v,,,,,(KBr)/m-' 1750, 1730, 1610, 1570, 1465, 1385, 1360, 1270, 1260, 1200, 1080, 1030, 965, 920 and 820; (200 MHz; 2H6DMSO) 1.99 (3 H, S, ArCH,OCOCH,), 2.41 (3 H, s, ArOCOCH,), 6.0 (2 H, s, ArCH,O), 7.62(1 H,d, J9.4,9-H),7.83(1 H,dd, J8.2and6.1, 2-H), 7.97(1 H,d, J9, 5-H),8.26(1 H,d, J9.4,8-H),8.35(1 H, d, J9,6-H), 9.10 (1 H, dd, J6.1 and 1.5,3-H), 9.21 (1 H, s, 7-H) and 9.60 (1 H, dd, J 8.2 and 1.5, 1-H); m/z (DCI/NH,/Bu') 361 (lOO,M+ + 1). 11-Methylbenzob 1,7phenanthrolin-lO-o19 A mixture of compound 8 (0.050 g, 0.14 mmol) and sodium borohydride (0.011 g, 0.28 mmol) in methanol (5 cm') was stirred at room temperature for 10 min.The mixture was then added dropwise to dichloromethane-water (10 :2, v/v). The organic layer was separated, dried with magnesium sulfate and concentrated under reduced pressure. Compound 9 was precipitated as a yellow solid (0.033 g, 90), mp 240 "C (Found: C, 75.8; H, 4.5; N, 10.25. Calc. for Cl,Hl,N,0~0.5 H,O: C, 75.82; H, 4.87; N, 10.40); A.,,,(EtOH)/nm 3 11 (/dm3 mol-' m-'27 500), 300 (22 600), 260 (38 400), 235 (20 200) and 218 (18 700); vmaX(KBr)/m-'3440, 3200, 2640, 1610, 1520, 1410, 1310, 1240, 1085, 1055, 910 and 790; dH(200 MHZ; C2H,DMSO) 2.68 (3 H, s, ArCH,), 7.41 (1 H, d, J 8.9, 9-H), 7.83-8.09 (3 H, m, 2-H, 5-H and 8-H), 8.33 (1 H, d, J 9, 6-H), 8.93 (1 H, s, 7-H), 9.13 (1 H, d, J 5.1,3-H) and 9.9 (1 H, d, J8.1, 1-H);m/~(EI) 260 (loo, M+).3-Ethoxy lbenzooxh~o5,66 1,TJphenanthroline 10 A mixture of compound 8(0.100 g, 0.27 mmol), acetonitrile (20 cm3), ethyl vinyl ether (10 cm3) and aqueous sodium hydroxide (1 mol drn-,; 2 cm3) was stirred at room temperature for 4 h. The mixture was then concentrated, diluted with water and extracted with chloroform. The organic layer was evaporated to dryness and the crude solid directly purified by column chromatography on silica gel (gradient elution: chloroform- ethyl acetate) to yield compound 10as a pale yellow solid (0.0 15 g, 17),mp 168-169 "C (Found: C, 74.55; H, 5.4; N, 8.1.Calc. for C2,H,8N20,~0.5 H,O: C, 74.32; H, 5.64; N, 8.25); v,,,(KBr)/cm-' 3450,2980,2920,1610,1470,1420,1390,1320, 1280,1220,~120,1100,1060,950,920,870,840and 790; dH(300 MHz; CDCl,) 1.22 (3 H, t, J 7.02, CH,), C2.32-2.26 (1 H, m), 2.2S2.13 (1 H, m), ArCH,CH,CH, c4.0-3.94 (1 H, m), 3.76 3.66 (2 H, m), 3.52-3.42 (1 H, m), CH2Ar and OCH,CH,), 5.42 (1 H, t, J2.8, CH), 7.22 (1 H, d, J9,9-H), 7.62 (1 H, dd, J 8.1 and 4.8,2-H), 7.82 (1 H, d, J9,8-H), 7.9 (1 H, d, J9.1,5-H), 7.98 (1 H,d, J9.1,6-H), 8.58 (1 H, S, 7-H), 9.0(1 H, dd, J4, 8 and 1.7,3-H) and 9.74 (1 H, dd, J8.1 and 1.7, 1-H); d,(CDCl,) 15.19 (CH,), 16.66 (ArCH,CH,CH), 26.35 (ArCH,), 64.11 (OCH,CH,), 97.88 (CH), 116.71, 120.87, 121.73, 122.83, 123.09, 126.93, 127.44, 127.53, 129.72, 133.18, 135.32, 145.96, 147.29, 150.53, 151.09 and 153.27; m/z(FAB+, NBA) 331 (73, M+ + l), 301 (34, M+ -C2H,), 285 (23, M+ -OC,H,) and 273.References 1 For review articles, see (a)M. Wakselman, Noun J. Chim., 1983,7, 439; (6) The Chemistry of Quinonoid Compounds, ed. S. Patai, Wiley, New York, 1974, p. 1145. 2 (a) 0. L. Chapman, M. R. Engel, J. P. Springer and J. C. Clardy, J. Am. Chem. SOC.,1971,93,6697; (b)S.R.Angle and M. S. Louie, Tetrahedron Lett., 1993, 34, 4751; (c) J. P.Marino and S. L. Dax, J. Org. Chem., 1984,49, 3671; (d)T. Inoue, S. Inoue and K. Sato, Bull. Chem. SOC.Jpn., 1990,63, 1647. 3 (a) G. Gaudiano, M. Egholm, M. J. Haddadin and T. H. Koch, J. CHEM. soc. PERKIN TRANS. 1 1995 J. Org. Chem., 1989, 54, 5090; (b) M.Egholm and T. H. Koch, J. Am. Chem. Soc., 1989, 111, 8291; (c) K. Mori and M. Matsui, Tetrahedron,1970,26,3467; (d)J. L. Bolton, H. Severtre, B. 0.Ibe and J. A. Thompson, Chem. Res. Toxicol., 1990, 3, 65; (e) J. F. Hamon, M. Wakselman and M. Vilkas, Bull. SOC.Chim. Fr., 1975, 1387; cf)S.R. Angle and K. D. Turnbull, J. Am. Chem. SOC.,1990, 112, 3698; (g) S. M. Kupchan, A. Karim and C. March, J. Org. Chem., 1969,34,39 12. 4 (a) For a review article, see D. C. Thompson, J. A. Thompson, M. Sugumaran and P. Moldeus, Chem. Biol. interactions, I992,86, 129; (b)R. C. Boruah and E. B. Skibo, J. Org. Chem., 1993,58,7797; (c) D. C. Thompson, K. Perera and R. London, Chem. Res. Toxicol., 1995,8, 55; (d)D. Cabaret, J.Liu, M. Wakselman, R. F. Pratt and Y. Xu, Bioorg. Med. Chem., 1994,2,757. 5 T. Li, Q. Zeng and S. E. Rokita, Bioconjugate Chem., 1994,5,497; M. ChattejeeandS. E.Rokita, J. Am. Chem. SOC.,1994,116, 1690. 6 (a)K. K. Balasubramanian and S. Selvaraj, J. Org. Chem.,1980,45, 3726; (6) R. Andriasano, C. Della Casa and M. Tramontini, J. Chem.SOC.(C), 1970, 1866. 7 (a) G. R. Sprengling, J. Am. Chem. SOC., 1952, 74, 2937; (b) M. Wakselman, J. C. Robert, G. Decodts and M. Vilkas, Bull. SOC.Chim.Fr., 1973,1179; (c)R. R. Schmidt, Tetrahedron Lett., 1969, 60,5279; (d) A. Arduini, A. Bosi, A. Pochini and R. Ungaro, Tetrahedron,1985,41,3095. 8 (a) S. R. Angle and J. D. Rainier, J. Org. Chem., 1992, 57, 6883; (b) D. A. Bolon, J. Org. Chem., 1970,35,3666.9 (a)A. R. Katritzky and X. Lan, Synthesis, 1992, 761; (b)M. Yato, T. Ohwada and K. Shudo, J. Am. Chem. SOC.,1990, 112, 5341; (c) K. Karabelas and H. W. Moore, J.Am. Chem. SOC.,1990,112,5372; (d)T. Inoue, S. Inoue and K. Sato, Bull. Chem. SOC.Jpn., 1990,63,1. 10 A preliminary communication on the synthesis of the 10-aminobenzob 1,7phenanthroline has been published, see A. Wardani and J. Lhomme, Tetrahedron Lett., 1993,34,6411 11 A. Wardani, These d'Etat, Universitii Libre de Bruxelles, 1989. 12 (a)C. Balasubramanian, K. Kumaraswami, N. Dharmaraj and P. S. Mohan, Indian J. Chem., Sect. B, 1993,32,460, (b)R. 0.Dempcy and E. B. Skibo, Bioorg. Med. Chem., 1993,1,39. 13 T, Kametani, A. Ujii, M. Ihara and K. Fukumoto, J. Chem. Soc., Perkin Trans.I, 1975, 1822. 14 (a)A. Denis, M. Delmas and A. Gaset, J. Heterocycl. Chem., 1984, 21, 517; (b) F. Bigi, G. Casiraghi, G. Casnati and G. Sartori, Synthesis, 1980, 724; (c) C. E. Kaslow and S. Raymond, J. Am. Chem. SOC.,1948, 70, 3912; (d) A. Mc Gookin, A. Robertson and T. H. Simpson, J. Chem. SOC.,1951, 2021; (e) Recently a successful preparation of 6-nitro- 1,3-benzodioxine under acidic conditions (toluene, APTS) was published: M. Yeh, F. Tang, S.Chen, W. Liu and L. Lin, J. Org. Chem., 1994,59,754. 15 (a)A. G. Cairns-Smith, J. Chem. SOC.,196 1, 182; (b) A. Merijan and P. D. Gardner, J. Org. Chem., 1965,30,3965. 16 M. S. Chauhan, F. M. Dean, D. Matkin and M. L. Robinson, J. Chem. SOC.,Perkin Trans. I, 1973,120. 17 J. Quick and J. K. Crelling, J. Org. Chem., 1978,43, 155. 18 Vinyl ethers have been frequently used to trap quinomethane intermediates. For examples, see (a)T. Inoue, S. Inoue and K. Sato, Chem. Lett., 1989, 653; (b) D. A. Bolon, J. Org. Chem., 1970, 35, 3666; see also ref. 3(a),ref. 7(c) and ref. 7(d). 19 Addition of nucleophiles to quinomethane has been observed with various nucleophilic species, see for examples (a) S. R. Angle and W. Yang, Tetrahedron Lett., 1992, 33, 6089; (b) M. A. Sanner, M. Stransberry, C. Wergelt and W. F. Michne, Tetrahedron Lett., 1992,33, 5287; (c) M. Wakselman, J. C. Roberts, G. Decodts and M. Vilkas, Bull. SOC.Chim. Fr., 1973, 1 179. Paper 5/0 1 790D Received 21st March 1995 Accepted 31st March 1995
机译:J. CHEM. SOC. PERKIN TRANS. 1 1995 A 菲喹啉:前体的合成和研究 Noemie Fixler, Hervk Salez, Martine Demeunynck * and Jean Lhomme * LEDSS, Universitt J.Fourier, BP53, 38041 Grenoble Cedex 9, France 由[1,3]苯并二恶并[5,6-b][1,7]菲咯啉2制备了两种喹啉前体:邻羟基化甲醚6和二乙酸酯8。喹啉甲烷中间体4通过还原、亲核加成和[4+21与乙基乙烯基醚的加成作用被捕获。这些物种已被用作天然产物全合成的关键中间体2,并参与各种生物和毒理学过程。喹啉甲烷中间体也被推测为在几种药物和异生素的生物转化过程中形成的~.~ 最近,Li等人使用寡核苷酸上支持的喹啉甲烷前体对DNA进行选择性修饰。这些高反应性物质最常通过邻苯酚曼尼希碱和邻羟基苯甲醇的热降解或烷基酚的氧化原位生成.8 生成喹啶烷的新方法也更重新~ent,~从苯并三唑烷基苯酚01,~“烷基硫烷基苯酚9c或三甲基硅烷衍生物开始。9d 在一项致力于寻找新抗癌药物的计划中,我们开发了一系列苯并[b]-[1,7]菲罗啉,取代于第10位。作为这项工作的一部分,已经制备了10-羟基苯并[b][1,7 Jphenanthroline 1,研究了其反应性并获得了许多衍生物。特别是,OH基团(C-11)的位置a似乎与亲电物质具有很高的反应性。在寻找同时具有DNA亲和力和烷基化特性的药物时,我们设计了将喹啉甲烷前体部分掺入苯并菲罗啉多环体系的分子,该多环体系对DNA表现出良好的亲和力。据我们所知,关于杂环邻喹啶的反应性的文章很少。I2 1,3-二恶因 2 似乎是进入该系列的良好候选者,因为缩醛环的裂解可以产生双功能分子,例如 6 和 8 作为可能的喹啉甲烷前体。本文报道了1H-[l,3]苯并二恶基-[5,6-b][1,7]菲罗啉2的合成,稳定喹啉甲烷前体6和8的制备及其化学反应性的研究。TBE1,3-beazodioxine 2 的合成结果与讨论 制备 1,3-苯并二肟的常用方法是两步法,包括苯酚衍生物在碱性介质中与甲醛的羟甲基化,然后环化。在酸性介质中用甲醛处理苯酚衍生物也被使用,但通常收率低,并且由于二聚化或缩聚而形成许多副产物.l4 在碱性条件下用甲醛处理 1 (1 mol dm-3 NaOH) 产生不溶产物。相反,在甲磺酸中将大量过量的甲醛与羟基衍生物1反应,得到二恶因2的收率为70%(方案1)。2的结构通过'H NMR和质量678 07 6 Scbeme 1光谱法确定。在核磁共振波谱中,存在于1中的OH信号已经消失,6 5.42和5.48处的两个单线态(每个单线态积分为两个质子)表明存在1,3-二氧六环结构。该反应是完全区域选择性的,通过对反应混合物的HPLC分析,不能检测到第9位反应产生的产物.7二恶环的打开 为了获得10-羟基-1 I-羟甲基衍生物3,即喹啉甲烷4的直接前体,我们使用了Kaslow和Raymond提出的策略(方案2)。& 这 3 位 Scbeme 2 作者已经证明,二氧并[5,4-氟喹啉环体系在稀酸介质中耐水解,但在浓盐酸中,二氧噁环可以打开以得到二喹啉甲烷衍生物。作者通过在乙酸酐-硫酸的混合物中进行反应来捕获羟甲基中间体,并得到二乙酸酯衍生物,随后在乙醇中用乙醇钠脱乙酰化。以类似的方式,在酸性介质(甲磺酸-水)中加热化合物 2 得到一种几乎完全不溶于所有使用的溶剂的化合物作为主要产物。这种不溶性阻碍了任何正确的核磁共振分析。然而,质谱显示分子量为504。通过类比 中报告的数据,我们提出了 1 1,ll ' -亚甲基双(羟基苯并[b]菲罗啉)结构 5 来解释指示的质量。在吖啶系列中也描述了相同类型的桥接结构。用甲醛加热3-羟基吖啶得到~~t 化合物2上芳香族亲电取代的区域选择性,由'H在酸性介质中质子-氘交换的结果证实,NMR.In 氘代三氟乙酸-水(1:1)混合物中,唯一的交换发生在位置1 1.半衰期估计为1 h,在65“C. J. CHEM. soc. PERKIN TRANS. 1 1995 hyde存在下乙酸钠。15' 二噁环打开 H'MOH' 生成二乙酸酯 8,是通过在乙酸 r-9 酸和乙酸酐的混合物中用甲磺酸处理化合物 2 来实现的(方案 3)。化合物 8 是 I CHOH2 6 6 + 7'Nmob 0 OAC 8 方案 3 分离得率 75%。'H NMR谱图表征为6、1.99和2.41处的两个单线态,分别对应于两个乙酰基团(分别为苄基和酚基)。二酯8很容易通过柱层析纯化。在甲醇存在下对甲磺酸中进行2的溶剂分解,得到甲醚6的收率为80%。分离出相应的季级化合物7作为副产物硫酸甲酯。通过与通过甲基醚甲基化获得的真实样品进行比较来鉴定该化合物 6.化合物 6 和 8 的反应性 甲醚 6 在 1 mol dm-3 NaOH 中似乎是稳定的。在酸性条件下(甲磺酸-乙酸,I:1,70OC,过夜),甲醚6缓慢分解,得到桥接化合物5作为质谱法所示的主要产物。在酸性(1 mol dm-3 HCl)和碱性条件(1 mol dm-3 NaOH)下,二乙酸8迅速消失,得到无法通过HPLC或TLC分析的化合物。同样,我们可以假设亚甲基双苯并菲罗啉 5 主要在这些条件下形成,因为从 156.14~.16 升中可以知道,邻羟甲基苯酚在碱性或酸性条件下迅速分解,形成亚甲基桥结构。使用硼氢化钠,一种被描述为在乙酸苄酯存在下选择性地脱保护苯酚乙酸酯的方法,“我们得到了一种新的化合物9(方案4)。'H NMR谱图表征为6 2.68处的单线态,积分为3个质子,表明乙酸苄酯已被还原为甲基。在亲核溶剂中,即在甲醇中,将二乙酸酯8缓慢水解,最终产物被鉴定为甲醚衍生物6.在甲醇中加热8在50“C下过夜,得到6的定量收率。10 方案 4 为了捕获假定的喹啉甲烷中间体,在乙基乙烯基醚存在下进行二乙酸酯 8 的碱性水解.18 反应在室温下在乙腈中缓慢进行。TLC和HPLC分析表明,与焦油一起形成了一种新产物。以17%的收率分离出来,鉴定为环状化合物10。在'H NMR波谱中,所有在6 3.2和4.0之间共振的亚甲基质子都表现为复杂的多重子,因为它们是非对映性的。乙醛质子在6 5.42处被鉴定为三重态,乙氧基的甲基质子在S处被鉴定为三重态 1.22.In 结论,我们制备了10-羟基-l-l-羟甲基衍生物3的不同前体:甲醚衍生物6和二乙酸酯8。所有反应性数据都可以解释为涉及喹啉甲烷中间体4的中间体。在酸性或碱性条件下,化合物 6 和 8 分解得到桥接分子 5。假设的喹啉甲烷中间体 4 已被 4 + 2 环加成与乙基乙烯基醚捕获。该中间体的强亲电特性也解释了甲醇或氢化物在苄基碳上的亲核加成,分别得到衍生物 6 和 9.19 从机理的角度来看,似乎可以合理地考虑在酸性介质中,甲醚 6 的溶剂分解得到质子化喹啉甲烷 4-HC1, 在没有亲核试剂的情况下立即分解,得到 5.二乙酸酯衍生物(6-乙酰氧基-5-乙酰氧基甲基喹啉)在碱性条件下的水解已在文献中用于制备6-羟基-5-羟甲基-q~氨基啉;~' 该化合物被分离出来,收率很高。然而,在本例中,我们无法通过水解二乙酸酯8来分离相应的二羟基衍生物3,即使在非常温和的条件下工作也是如此。为此可以提出两个假设:化合物 3 的反应性非常高,可瞬间转化为喹啉甲烷中间体 4,或者化合物 8 直接形成喹啉甲烷,如方案所示 5.In 无论如何,本系列中引用的衍生物似乎比文献中已经描述的大多数类似化合物更具反应性。'这种高反应性3714c添加到菲咯啉骨架对DNA的亲和力中,可以赋予该系列作为DNA修饰剂的有趣特性$The。已发现 6 x lo3 dm3 mol-' 亲和结合常数。J. CHEM. SOC. PERKIN TRANS. 1 1995 8 3 + NuOAc 9 Hybide 6 Nudeophileaddiihaddition 实验 一般方法 使用 [2H,]二甲基亚砜 ([2H,]DMSO) (6, 43.5 ppm) 或 CDCl, (6, 77.0 ppm) 作为内部参比,在 Bruker AM 300、AM 200 或 AM 400 光谱仪上记录 13C NMR 谱图。]DMSO (6“ 2.49 ppm) 或 CDCl, (dH 7.24 ppm) 作为内部参比。所有 J 值均以 Hz 为单位。 质谱图是在瓦里安 MAT311 和 AET MS30 光谱仪上获得的。在 298 和 1320 Perkin-Elmer 光谱仪上以 KBr 颗粒形式获得红外光谱。使用硅溶胶60(Merck)硅胶进行柱层析。熔点记录在Totoli熔点仪上,未经校正。元素分析由“CNRS显微分析服务中心”进行。1H-[1,3]苯并二恶并[5,6b][1,7]菲罗啉2 化合物1(0.15g,0.6mmol),多聚甲醛(0.06g,2mmol)和甲磺酸(4cm3)的溶液在室温下搅拌30分钟。然后将混合物滴加到二氯甲烷-氨水-冰(1:0.05:0.15)的混合物中。有机层分离、干燥、浓缩,用硅胶柱层析(梯度洗脱:二氯甲烷-乙酸乙酯)直接纯化,得到化合物2为淡黄色固体(0.129g,75%),mp 219“C(发现:C,74.8;H,4.05;N,9.9。C,,H,,N,O,的计算值: C,74.99;H,4.2;N,9.72%);A,,,(EtOH)/nm 255 (&/dm3mol-' cm-' 44600)、296 (29 800) 和 309 (34 100);vmax(KBr)/cm-' 3420, 301 0,2900, 1640, 1620, 1590, 1480, 1440, 1400, 1290, 1250, 1200, 1150, 1100, 1020, 980 和 830;SH(3O0兆赫;[2H6]DMSO) 5.2 (2 H, s, OCH,O), 5.48 (2 H, s, ArCH,O),7.25(1 H,d, J9.1,5-H),7.68(1 H,dd, J8.2and4.4, 12-H),7.79(1H,d,J9.2,9-H),7.98(1H,d,J9.01,6-H),8.06(1 H, d, J9.2,8-H), 8.89 (1 H, s, 7-H), 8.97 (1 H, dd, J4.4 和 1.7,1 l-H)和 9.44(1 H,dd,J 8.2 和 1.7,13-H);m/z(El) 288 (50%, M'), 258 (100, M -CH,O) 230 (56) 和 203 (35)。化合物2在酸性条件下的反应:生成11,l1'-亚甲基双(苯并[b][1,7]菲罗林-lO-醇)5化合物2(0.6g,2.1mmol),甲磺酸(60cm3)和水(60cm3)的溶液在70“C下加热10小时。然后将混合物冷却至室温,用碳酸钾水溶液碱化,并用二氯甲烷洗涤。这样形成的乳液溶于甲醇中并浓缩。化合物5沉淀为黄色固体(0.4克,80%),熔点320“C(发现:C,72.3;H,4.1;N,9.9。计算。C3,HzoN,O2*2.5 H20:C,72.12;H,4.58;N,10.19%);A,,,(EtOH)/nm 219 (4dm3 mol-' cm-' 23 OW)、238 (25 OW)、258 (42 900)、298 (27 900)、310 (23 300)、335 (9200)、352 (7200)、380 (6600) 和 396 (3000);v,,,(KBr)/cm-' 3000、1600、1570、1475、1420、1380、1270、1240、1085、975、915 和 790;m/z (DCI/NH3/Bui) 505 (loo%, M' + 1) 和 259 (94, -C16H9N2)。化合物 2 在酸性甲醇中的反应:形成 10-羟基-1 l-甲氧基甲基苯并[ b] [1,7]菲罗啉 6 和 10-羟基-1l-甲氧基甲基 4 甲基苯并[b] [1,7] -菲啉 4 硫酸甲酯 7 化合物 2 (0.108 g, 0.38 mmol) 在甲磺酸甲醇 (2 cm3, 1 :1, v :v) 中的溶液在 70 “C 下加热 10 小时。 用饱和碳酸氢钠水溶液处理,用二氯甲烷萃取。化合物6和7通过加入乙醚-己烷沉淀。将粗固体在乙酸乙酯中搅拌,滤去不溶性化合物7(10%)。将滤液浓缩,用乙醚化合物6稀释后析出黄色固体(0.080g,80%)。化合物6:mp 145“C(发现:C,74.3;H,4.75;N,9.6。计算值 ClgH14N,02: c, 74.47;H,4.86;N, 9.65%);A,,,(EtOH)/nm 258 (&/dm3 mol-' cm-' 51 800)、298 (32 300)、310 (39900)、337 (8500)、350 (5800)、380 (5100) 和 399 (4700);v,,,(KBr)/cm-' 3020、2920、2640、1630、161 0、1570、1540、1470、1430、1400、1360、1280、1240、1220、1150、1110、1080、1050、1OOO、900、820、790 和 720;dH(300兆赫;CDCl,) 3.62 (3 H, s, OCH,), 5.61 (2 H, s, ArCH,O), 7.18 (1 H, d, J9,9- H), 7.53 (1 H, dd, J 8.2 和 4.5, 2-H), 7.73 (1 H, d, J 9, 8-H), 7.80 (2 H, m, 5-H 和 6-H), 8.39 (1 H, s, 7-H), 8.94 (1 H, dd, J 4.5和1.6,3-H),9.35(1 H,s,OH)和9.46(1 H,dd,J8.2和1.6,1-H);m/z (EI) 290 (31%, M')、275 (100, M -CH,) 和 258 (35, M -CH3OH)。化合物 7:mp > 230“C;v,,,(KBr)/cm-' 3430、3080、1610、1470、1420、1310、1190、1060、790 和 780;6,(200兆赫;CDCl,) 2.29 (3 H, s, CH,SO,-), 3.42 (3 H, s, OCH,), 4.70 (3 H, s, N'CH,), 5.27 (2 H, s, ArCH,O), 7.56 (1 H, d, J9,9-H), 8.2- 8.4(3H,m),8.74(1 H,d, J9.6,6-H),9.24(1 H,s, 7-H),9.50(1 H, d, J 5.9, 3-H), 10.35 (1 H, d, J 8.2, 1-H) 和 10.91 (1 H, s, OH);m/z (DCI/NH,/Bu') 291 (loo%, M + H+ -CH,), 275 (10) 和 259 (3).10-乙酰氧基-1 l-乙酰氧基甲基苯并[b] [1,7]菲罗啉8 化合物 2 (0.45 g, 1.56 mmol)、甲磺酸 (1 2 an3)、乙酸 (1 2 cm3) 和乙酸酐 (6 an3) 的混合物在 70°C 下加热 9 小时.然后将混合物冷却至室温,用饱和碳酸钠水处理并用二氯甲烷萃取。化合物8通过加入乙醚己烷沉淀并分离为淡棕色固体(0.42 g, 75%), mp 21 5 “C (发现: C, 69.7;H,4.5;N, 7.6.计算值 for C21H,,N,O,: C, 69.99;H,4.47;N,7.77%);A,,,(EtOH)/nm 218 (&/dm3 mol-' cm-' 33 loo)、251 (48 750)、291 (34 loo)、301 (44600)、342 (6900)、358 (5250) 和 377 (3300);v,,,,,(KBr)/m-' 1750、1730、1610、1570、1465、1385、1360、1270、1260、1200、1080、1030、965、920 和 820;&(200兆赫;[2H6]DMSO) 1.99 (3 H, S, ArCH,OCOCH,), 2.41 (3 H, s, ArOCOCH,), 6.0 (2 H, s, ArCH,O), 7.62(1 H,d, J9.4,9-H),7.83(1 H,dd, J8.2and6.1, 2-H), 7.97(1 H,d, J9, 5-H),8.26(1 H,d, J9.4,8-H),8.35(1 H, d, J9,6-H), 9.10 (1 H, dd, J6.1 和 1.5,3-H)、9.21 (1 H, s, 7-H) 和 9.60 (1 H, dd, J 8.2 和 1.5, 1-H);m/z (DCI/NH,/Bu') 361 (lOO%,M+ + 1).11-甲基苯并[b][1,7]菲罗林-lO-o19化合物8(0.050g,0.14mmol)和硼氢化钠(0.011g,0.28mmol)在甲醇(5cm')中的混合物在室温下搅拌10分钟。然后将混合物滴加到二氯甲烷水(10 : 2, v/v)中。分离有机层,用硫酸镁干燥,减压浓缩。化合物9析出为黄色固体(0.033克,90%),熔点240“C(发现:C,75.8;H,4.5;N,10.25。计算值:Cl,Hl,N,0~0.5 H,O: C, 75.82;H,4.87;N,10.40%);A.,,,(EtOH)/nm 3 11 (&/dm3 mol-' m-'27 500)、300 (22 600)、260 (38 400)、235 (20 200) 和 218 (18 700);vmaX(KBr)/m-'3440、3200、2640、1610、1520、1410、1310、1240、1085、1055、910 和 790;dH(200 MHZ;C2H,]DMSO) 2.68 (3 H, s, ArCH,), 7.41 (1 H, d, J 8.9, 9-H), 7.83-8.09 (3 H, m, 2-H, 5-H 和 8-H), 8.33 (1 H, d, J 9, 6-H), 8.93 (1 H, s, 7-H), 9.13 (1 H, d, J 5.1,3-H) 和 9.9 (1 H, d, J8.1, 1-H);m/~(EI) 260 (loo%, M+).3-乙氧基[ l]苯并氧~o[5,66] [1,T菲罗啉10 将化合物8(0.100 g,0.27 mmol)、乙腈(20 cm3)、乙基乙烯基醚(10 cm3)和氢氧化钠水溶液(1 mol drn-,; 2 cm3)的混合物在室温下搅拌4 h。然后将混合物浓缩,用水稀释并用氯仿萃取。将有机层蒸发至干,粗固体在硅胶上直接用柱层析法(梯度洗脱:氯仿-乙酸乙酯)纯化,得到化合物10as淡黄色固体(0.0 15g,17%),mp 168-169“C(发现:C,74.55;H,5.4;N, 8.1.计算值 for C2,H,8N20,~0.5 H,O: C, 74.32;H,5.64;N,8.25%);v,,,(KBr)/cm-' 3450,2980,2920,1610,1470,1420,1390,1320,1280,1220,~120,1100,1060,950,920,870,840和790;dH(300兆赫;CDCl,) 1.22 (3 H, t, J 7.02, CH,), C2.32-2.26 (1 H, m), 2.2S2.13 (1 H, m), ArCH,CH,CH], c4.0-3.94 (1 H, m), 3.76 3.66 (2 H, m), 3.52-3.42 (1 H, m), CH2Ar and OCH,CH,)], 5.42 (1 H, t, J2.8, CH), 7.22 (1 H, d, J9,9-H), 7.62 (1 H, dd, J 8.1 和 4.8,2-H), 7.82 (1 H, d, J9,8-H), 7.9 (1 H, d, J9.1,5-H), 7.98 (1 H, d, J9.1,6-H), 8.58 (1 H, S, 7-H), 9.0 (1 H, dd, J4, 8 和 1.7,3-H) 和 9.74 (1 H, dd, J8.1 和 1.7, 1-H);d,(CDCl,) 15.19 (CH,), 16.66 (ArCH,CH,CH), 26.35 (ArCH,), 64.11 (OCH,CH,), 97.88 (CH), 116.71, 120.87, 121.73, 122.83, 123.09, 126.93, 127.44, 127.53, 129.72、133.18、135.32、145.96、147.29、150.53、151.09和153.27;m/z(FAB+, NBA) 331 (73, M+ + l), 301 (34, M+ -C2H,), 285 (23, M+ -OC,H,) and 273.参考文献 1 综述文章见 (a)M. Wakselman, Noun J. Chim., 1983,7, 439;(6) The Chemistry of Quinonoid Compounds, ed. S. Patai, Wiley, New York, 1974, p. 1145.2(一)0.L. Chapman, M. R. Engel, J. P. Springer 和 J. C. Clardy, J. Am. Chem. SOC.,1971,93,6697;(二)S.R.Angle 和 M. S. Louie, Tetrahedron Lett., 1993, 34, 4751;(c) J. P.Marino 和 S. L. Dax, J. Org. Chem., 1984,49, 3671;(d)T. Inoue, S. Inoue 和 K. Sato, Bull.化学 SOC.Jpn, 1990,63, 1647.3 (a) G. Gaudiano, M. Egholm, M. J. Haddadin and T. H. Koch, J. CHEM. soc. PERKIN TRANS. 1 1995 J. Org. Chem., 1989, 54, 5090;(b) M.Egholm 和 T. H. Koch, J. Am. Chem. Soc., 1989, 111, 8291;(c) K. Mori 和 M. Matsui,四面体,1970,26,3467;(d)J. L. Bolton, H. Severtre, B. 0.Ibe and J. A. Thompson, Chem. Res. Toxicol., 1990, 3, 65;(e) J.F.Hamon、M.Wakselman和M.Vilkas, Bull。SOC。噗噗。Fr., 1975, 1387;参见S.R. Angle和K. D. Turnbull, J. Am. Chem. SOC.,1990, 112, 3698;(g) S. M. Kupchan, A. Karim and C. March, J. Org. Chem., 1969,34,39 12.4 (a) 综述文章见D. C. Thompson, J. A. Thompson, M. Sugumaran and P. Moldeus, Chem. Biol. interactions, I992,86, 129;(b)R. C. Boruah 和 E. B. Skibo, J. Org. Chem., 1993,58,7797;(c) D. C. Thompson, K. Perera and R. London, Chem. Res. Toxicol., 1995,8, 55;(d)D. Cabaret, J.Liu, M. Wakselman, R. F. Pratt and Y.徐,Bioorg.医学化学, 1994,2,757.5 T. Li, Q. Zeng 和 S. E. Rokita, Bioconjugate Chem., 1994,5,497;M.查特吉安德。E.Rokita, J. Am. Chem. SOC.,1994,116, 1690.6 (a)K. K. Balasubramanian 和 S. Selvaraj, J. Org. Chem.,1980,45, 3726;(6) R. Andriasano, C. Della Casa 和 M. Tramontini, J. Chem.SOC.(C),1970年,1866年。7 (a) G. R. Sprengling, J. Am. Chem. SOC., 1952, 74, 2937;(b) M. Wakselman, J. C. Robert, G. Decodts 和 M. Vilkas, Bull.SOC。Chim.Fr., 1973,1179;(c)R. R. Schmidt, Tetrahedron Lett., 1969, 60,5279;(d) A. Arduini, A. Bosi, A. Pochini and R. Ungaro, Tetrahedron,1985,41,3095.8 (a) S. R. Angle 和 J. D. Rainier, J. Org. Chem., 1992, 57, 6883;(b) D. A. Bolon, J. Org. Chem., 1970,35,3666.9 (a)A. R. Katritzky and X. Lan, Synthesis, 1992, 761;(b)M. Yato, T. Ohwada and K. Shudo, J. Am. Chem. SOC.,1990, 112, 5341;(c) K. Karabelas 和 H. W. Moore, J.Am. Chem. SOC.,1990,112,5372;(d)T. Inoue, S. Inoue 和 K. Sato, Bull.化学 SOC.Jpn., 1990,63,1.10 关于合成10-氨基苯并[b][1,7]菲罗啉的初步通讯已经发表,见A.Wardani和J.Lhomme,Tetrahedron Lett.,1993,34,6411 11 A.Wardani,These d'Etat,布鲁塞尔自由大学,1989年。12 (a)C. Balasubramanian, K. Kumaraswami, N. Dharmaraj and P. S. Mohan, Indian J. Chem., Sect. B, 1993,32,460, (b)R. 0.Dempcy and E. B. Skibo, Bioorg.医学化学, 1993,1,39.13 T, Kametani, A. Ujii, M. Ihara and K. Fukumoto, J. Chem. Soc., Perkin Trans.I, 1975, 1822.14 (a)A. 丹尼斯,M.Delmas 和 A. Gaset,J. Heterocycl。化学, 1984, 21, 517;(b) F. Bigi、G. Casiraghi、G. Casnati 和 G. Sartori,《综合》,1980年,第724页;(c) C. E. Kaslow and S. Raymond, J. Am. Chem. SOC.,1948, 70, 3912;(d) A. Mc Gookin, A. Robertson 和 T. H. Simpson, J. Chem. SOC.,1951, 2021;(e) 最近发表了在酸性条件下成功制备6-硝基-1,3-苯并二恶英(甲苯,APTS)的论文:M. Yeh, F. Tang, S.Chen, W. Liu and L. Lin, J. Org. Chem., 1994,59,754。15 (a)A. G. Cairns-Smith, J. Chem. SOC.,196 1, 182;(b) A. Merijan 和 P. D. Gardner, J. Org. Chem., 1965,30,3965.16 M. S. Chauhan, F. M. Dean, D. Matkin and M. L. Robinson, J. Chem. SOC.,Perkin Trans. I, 1973,120.17 J. Quick 和 J. K. Crelling, J. Org. Chem., 1978,43, 155.18 乙烯基醚经常用于捕获喹啉甲烷中间体。例如,见(a)T. Inoue, S. Inoue and K. Sato, Chem. Lett., 1989, 653;(b) D. A. Bolon, J. Org. Chem., 1970, 35, 3666;另见参考文献3(a)、参考文献7(c)和参考文献7(d)。19 在各种亲核物质中观察到在喹啉甲烷中加入亲核试剂,参见示例:(a) S. R. Angle and W. Yang, Tetrahedron Lett., 1992, 33, 6089;(b) M. A. Sanner, M. Stransberry, C. Wergelt and W. F. Michne, Tetrahedron Lett., 1992,33, 5287;(c) M.Wakselman、J.C.Roberts、G.Decodts和M.Vilkas, Bull。SOC。噗噗。Fr., 1973, 1 179.论文 5/0 1 790D 收稿日期 1995年3月21日 录用日期 1995年3月31日

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号