...
首页> 外文期刊>Macromolecular chemistry and physics >Morphology and rheology of poly(methyl methacrylate)-block-poly(isooctyl acrylate)-block-poly(methyl methacrylate) triblock copolymers, and potential as thermoplastic elastomers
【24h】

Morphology and rheology of poly(methyl methacrylate)-block-poly(isooctyl acrylate)-block-poly(methyl methacrylate) triblock copolymers, and potential as thermoplastic elastomers

机译:Morphology and rheology of poly(methyl methacrylate)-block-poly(isooctyl acrylate)-block-poly(methyl methacrylate) triblock copolymers, and potential as thermoplastic elastomers

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The phase morphology and rheological properties of a series of poly(methyl methacrylate)-block-poly(isooctyl acrylate)-block-poly(methyl methacrylate) triblock copolymers (MIM) have been studied. These copolymers have well-defined molecular structures, with a molecular weight (MW) of poly(methyl methacrylate) (PMMA) in the range of 3500-50000 and MW of poly- (isooctyl acrylate) (PIOA) ranging from 100000 to 140000. Atomic force microscopy with phase detection imaging has shown a two-phase morphology for all the MIM copolymers. The typical spherical, cylindrical, and lamellar phase morphologies have been observed depending on the copolymer composition. MIM consisting of very short PMMA end blocks (MW 3500-5000) behave as thermoplastic elastomers (TPEs), with however an upper-service temperature higher than the traditional polystyrene-block-polyisoprene-block-polystyrene TPEs (Kraton D1107). A higher processing temperature is also noted, consistent with the higher viscosity of PMMA compared to PS. References: 36

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号