...
首页> 外文期刊>Molecular biology and evolution >Evolution of Nitric Oxide Synthase Regulatory Genes by DNA Inversion
【24h】

Evolution of Nitric Oxide Synthase Regulatory Genes by DNA Inversion

机译:Evolution of Nitric Oxide Synthase Regulatory Genes by DNA Inversion

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

DNA inversions are mutations involving major rearrangements of the genome and are often regarded as either deleterious or catastrophic to gene function and can be associated with genomic disorders, such as Hunter syndrome and some forms of hemophilia. Here, we propose that DNA inversion are also an essential and hitherto unrecognized component of gene evolution in eukaryotic cells. Specifically, we provide evidence that an ancestral neuronal nitric oxide synthase (nNOS) gene was duplicated and that one copy retained its original function, whereas an internal DNA inversion occurred in the other. Crucially, the inversion resulted in the creation of new regulatory elements required for the termination and activation of transcription. In consequence, the duplicated gene was split, and two new and independently expressed genes were created. Through its dependence on DNA inversion, this is a fundamentally new scheme for gene evolution, which we show as being of particular relevance to the generation of endogenous antisense-containing RNA molecules. Functionally, such transcripts can operate as natural negative regulators of the expression of the genes to which they are related through a common ancestor.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号