首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >v-Triazolo4,5-dpyrimidines (8-azapurines). Part XVI. Preparation of 6-amino-8-azapurines by heating 4-amino-1,2,3-triazole-5-carbonitrile (and itsN-alkyl derivatives) with amidines
【24h】

v-Triazolo4,5-dpyrimidines (8-azapurines). Part XVI. Preparation of 6-amino-8-azapurines by heating 4-amino-1,2,3-triazole-5-carbonitrile (and itsN-alkyl derivatives) with amidines

机译:v-三唑并4,5-d嘧啶(8-氮杂嘌呤)。第十六部分 用脒加热4-氨基-1,2,3-三唑-5-甲腈(及其N-烷基衍生物)制备6-氨基-8-氮杂嘌呋喃

获取原文
获取外文期刊封面目录资料

摘要

1975 345v-Tr iazol o C4.5-d J py r i m id i nes (8-Aza p u r i nes) . Part XVI . Preparation of6-Amino-8-azapurines by heating 4-Amino-l,2,3-triazole-5-carbonitrile t(and its N-Alkyl Derivatives) with AmidinesBy Adrien Albert, Research School of Chemistry, Australian National University, Canberra, Australia, 26004-Arnino-l.2.3-triazole-5-carbonitrile. and its 1 -, 2-, and 3-methyl, and 3-benzyl derivatives (1 a - e ) , reacted withformamidine, acetamidine. 2,2,2-trichloroacetamidine, and NN'-dibutylforrnamidine to give the corresponding6-amino-, 6-amino-2-methyl-, 6-amino-2-trichloromethyl-, and 6-butylamino-8-azapurines (2). respectively.Yields were usually very good and the reaction has preparative value. 6-Arnino-9-benzyl-2-methyl-8-azapurinewas prepared also by the action of triethyl orthoacetate on 4-amino-3-benzyl-l.2.3-triazole-5-carboxarnidine (3).A 2-trichloromethyl-8-azapurine was conveniently dehalogenated to the 2-dichloromethyl analogue.4-Amino-3-benzyI-l.2.3-triazole-5-carbonitrile (1 e) was converted by free guanidine into 1 -(4-amino-3-benzyl-l,2,3-triazol-5-ylcarbonimidoyl)guanidine (7b), which could be cyclized thermally to 2.6-diamino-9-benzyl-8-azapurine (2p).The mechanisms of the amidine and guanidine reactions are compared.1.r. and lH n.m.r. spectra are recorded and discussed.6-AMINO-8-AZAPURINE (8-aza-adenine) has been found inhibits Gram-positive and -negative bacteria byt o inhibit cancer cells that have become resistant to it greatly reducesment with this drug. The 6-amino-compound also V.A. Gershun, Tsitologiya, 1970, 12, 467.sistently numbered 4, to facilitate comparisons.being incorporated into the RNA;2-amino-8-azapurin-6-one (8-azaguanine) during treat-t In this series, the amino-group of aminotriazoles is con-D. Adomaitiene, T. N. Ignatova, D. Ya. Podgaetskaya, andR. 0. Roblin, J. 0. Lampen, J . P. English, Q. P. Cole, andJ. D. Smith and R. E. F. Matthews, Biochevz. J., 1967, 66,J. R. Vaughan, J. A ~ ~ ~ . ,-hem. sot., 1946, 67, 290.323. 1 Part XV, A. Albert, J . C . S . Perkin I , 1974, 2030346 J.C.S. Perkin 1the rate of multiplication of tobacco mosaic 496 andpotato viruses, and it inhibits the synthesis of adeno-sine triphosphate in the fungus Neurospora crassa.7These inhibitions are typically reversed by adenine.3*sTo assist similar biological studies, a convenientsynthesis of 6-amino-8-azapurines with a variety ofsubstituents was sought.A likely pathway seemedto be the condensation of 4-amino-l,2,3-triazoles withvarious amidines, analogous to the Taylor-Ehrhartreaction in which 4-aminopyrimidine-5-carbonitrile andformamidine, at 1 3 5 O , gave 4-aminopyrimido4,5-d-pyrimidine.* This reaction, which has been extendedto the p y r r ~ l e , ~ oxazole,1° and imidazole lo series, wasreviewedll in 1970, and has since been used to convert2-aminopyrazine-3-carbonitrile into 4-amin0~teridine.l~In the present work, 4-amino-1,2,3-triazole-5-carbo-nitrile (la) and its 1-, 2-, and 3-methyl derivatives(1b-d) were condensed with formamidinium acetate at120" to give very good yields of 6-amino-8-azapurine1(1) ( 2)R R1 R2 K3a H a H H Hb l-Me b 7-Me H Hc 2-Me c 8-Me H Hd 3-Me d 9-Me H He 3-CH,Ph e 9-CH,Ph H Hf 7-Me H Meg 8-Me H Meh 9-CH2Ph H Mei 7-Me H CCI,j 8-Me H CQk 9-CHZPh H cc1,1 8-Me H CHCI,m 7-Me Bun Hn 8-Me Bun Ho 8-Me H NH2p 9-CH2Ph H NH,and its 7-, 8-, and 9-methyl derivatives, respectively(2a-d). The 9-benzyl analogue (2e) was.preparedfrom the corresponding triazole (le) ; the best yield(65) came from a short, incomplete reaction, whereaslonger heating gave a product contaminated by high-melting, feebly soluble material, different from thedimer l3 of the starting material, and suspected to arisefrom a Dains reaction (condensation of an amidine witha reactive methylene group, by elimination of am-rnonia).l4 To pursue this idea further, the N-4-acetyland -formy1 derivatives of the aminotriazole (le) weretreated similarly, but the former remained largely un-changed, and the latter was transformed mainly to the8-azapurine (2e).Some of the aminocyanotriazoles (lb-d) were con-6 I.R. Schneider, Phytopathology, 1964, 44, 243.6 I. P. Zhuk, L. F. Didenko, and N. I. Gorbarenko, Biol.7 H. Urbanek, Acta SOC. bot. Pol., 1967, 36, 347.8 E. C . Taylor and W. A. Ehrhart, J . Amer. Chem. SOL, 1960,8 E. C. Taylor and R. W. Hendress, J . Amer. Chem. Sac., 1966,Nauki, 1970, 108.82, 3138.87, 1996.densed with acetamidinium acetate to give excellentyields of the correspondingly N-alkylated 6-amino-2-methyl-8-azapurines (2f-h) .6-Amino-9-benzyl-2-methyl-8-azapurine (2h) was also prepared by heating4-amino-3-benzyl-l,2,3-triazole-5-carboxa.midine 1 (3)with triethyl orthoacetate ; when acetic anhydride waspresent also, the product was 6-acetamido-9-benzyl-2-methyl-8-azapurine. Moderate yields of three 6-amino-2-trichloromethyl-8-azapurines were obtained bycondensing 2,2,2-trichloroacetamidinium acetate with theaminocyanotriazoles (lb-d); the yield could not beimproved by increasing the reaction temperature (ashad been done with acetamidine) because of decom-position.6-Amino-8-methyl-2-trichloromethyl-8-azapurine (2j)was partly dehalogenated to 6-amino-2-dichloromethyl-8-methyl-8-azapurine (21) by tin(r1) chloride in coldacetone.Mechanism of Condensations with A midines.-Thecondensation (for example) for 4-amino-l-methyl-1,2,3-triazole-5-carbonitrile with formamidinium acetatecould proceed through either the 5-carbonimidoylfox-m-amidine (4) or 4-aminomethyleneamino-l-methyl-1,2,3-triazole-5-carbonitrile (5a).That the latter routewas preferred was indicated by the failure of 4-acet-amido-1 -methyl-1,2,3- triazole-5-carbonitrile to give theCH,Ph( 3 115)a;R=Hb; R= Me4-acetamido-derivative of (4) when heated with form-amidinium acetate under the conditions that convertedthe parent triazole (lb) into the 8-azapurine (2b). Themost likely formation of the postulated intermediate(6a) is by addition of the 4-amino-group of the triazoleto the double bond of the amidinium ion to give atetrahedral intermediate e.g.(S), a course parallel tothe addition l5 of ammonia to the cation of 4-dimethyl-aminomethyleneamino-1 -met hyl-1 ,2,3-triazole-5-carbo-lo J. P. Ferris and L. E. Orgel, J . Amev. Chem. Soc., 1966, 88,3829.l1 E. C. Taylor and A. McKillop, 'The Chemistry of CyclicEnaminonitriles and o-Aminonitriles,' Interscience, New York,1970.l* A. Albert and K. Ohta, J . Chem. SOC. ( C ) , 1971, 3727.18 A. Albert, J . Chem. SOC. ( C ) , 1970, 230.14 F. B. Dains, 0. 0. Malleis, and J. T. Meyers, J . Amer. Chem.Soc., 1913, 35, 970; F. B. Dains, R. Irvin, andC. G. Harrel, ibid.,1921, 43, 613; F. B. Dains, R. Thompson, and W. F. Asendorf,ibid., 1922, 44, 2310; R. M. Roberts, J .Org. Chem., 1949,14, 2771975 347nitrile (5b) as a preliminary to elimination of the di-methylammonium ion and ring closure to 6-amino-7-methy1-8-a~apurine.~~However, the following experimental evidence op-poses such a sequence of cationic forms here. Thetriazole (le) failed to react with acetamidine hydro-chloride under conditions where acetamidinium acetategave a 65 yield. This result made it desirable toexamine a free amidine. In place of free acetamidine(judged too unstable) , trichloroacetamidine was heatedwith the triazole (lc) and gave a 28 yield of the corre-sponding 8-azapurine (2j) (much of this amidine survivedthe reaction); however the acetate gave a 61 yield,and the hydrochloride none at all. Thus acidity ishelpful in one stage (and harmful in another) of thetotal reaction. The optimal acidity is too mild to forcethe eventual ring closure (addition of -NH, to -CN),which is most probably purely thermal.As an alterna-tive to a tetrahedral intermediate, it may be assumedthat a minute proportion of the aminotriazole is con-verted into its cation which combines with the (nucleo-philic) neutral midine much as equimolecular pro-portions of aniline and aniline hydrochloride reactin the industrial synthesis of diphenylamine. However,there is an immense difference in the basic strengths ofacetamidine (pKa 12-4) and these aminotriazolenitriles(e.g. pK, -1.4 for the 2-methyl derivative 16). In thelight of this discussion (which favours a tetrahedralintermediate), the severer conditions required for con-densing acetamidine (compared to formamidine) seemto be mainly electronic, and those encountered withtrichloroacetamidine mainly steric.NN' -Di bu t y If orm amidinium acetate and the t ria zoles(Ib and c) at 200" eliminated butylamine to give 6-butyl-amino-7( and 8)-methyl-8-azapurine (2m and n) respec-tively, by a spontaneous Dimroth rearrangement of thefirst - f ormed 1 -but yl-6-imino- 1,6-dihydro-8-azapurine .lThe hydrochloride of dibutylformamidine did notreact.Condensations with Guanidine.-In the literature,guanidine (always either free or as carbonate) has beenused to annulate o-amino-nitriles to diaminopyrimido-aza-analogues; this has been done in the pyrroline, pyri-midine, and pyrazine series only.ll Intermediates17)a; R=Z-Meb; R-3-CH2Phnamely 1 - (2-aminop yrazin-3-ylcarbonimido yl) guani-dines have been isolated only from the pyrazine-pteridine conversion^.^^ Here, 4-arnino-2-rnethyl-I,2,3-triazole-5-carbonitrile (lc) and free guanidine in boilingethanol readily gave 1- (4-amino-2-meth yl-l ,2,3-t riazol-16 A.Albert, J.C.S. Perkin I, 1972, 461.l6 A. Albert, J.C.S. Perkin I, 1973, 1634.5-ylcarbonimidoy1)guanidine (7a) which decomposedextensively when ring-closure to 2,6-diamino-8-methyl-8-azapurine (20) was attempted in boiling butanol,acetic acid, N-hydrochloric acid, or ethanolic sodiumhydroxide, or with guanidinium acetate in boilingbutanol. 1- (4-Amino-3-benzyl- 1,2,3-triazol-5-ylcarbon-imidoy1)guanidine (7b), similarly prepared, readilycyclized (in boiling butanol) to 2,6-diamino-9-benzyl-8-azapurine (2p).It was found that guanidinium acetate, unlike acet-amidinium acetate, had little tendency to react with theaminocyanotriazoles (1).The greater success of freeguanidine, and the different pathway selected by thisreagent, must depend on the greater ease with whichguanidine forms an anion, thanks to the electronicinfluence of the third amino-group. Such an anionwould readily add to the electropositive carbon of thecyano-group, leading to intermediates of type (7).Physical Constants.-1.r. spectra of 8-azapurines arein Table 1. The spectrum of 2,6-diamino-g-benzyl-8-azapurine is compatible with those of 2,6-diamino-7 (and 8) -met h yl-8-azapurine .l8 The 2- t ric hlor ome t h ylTABLE 11.r. spectra (Nujol)v,,/cm-l8-Azapurines6-Acetamido-9-benzyl-Gmethyl1 , 2,3-Triazoles4-Acetamido-3-benzyl-6-cyano3220, 3150br,w (NH str.),1690br,m (CO, amide I),1590br,s (amide 11), 1316s,1300s (amide 111), 1220m,and 715m3420m, 3315m, 3200m (NHstr.), 1650br,s, 1575s, 1355m,845s, and 795s (C-Cl str.)3290br,m, 3210m, 1625br,s,1225s, and 795m (C-Cl str.)3506w, 3370s, 3290m, 3260m,3130m (NH str.), 1685m.1610s (NH bend), 1585m, and1430m3230s, 3190s (NH str.),2246m ( E N str.), 1675br,s(CO str.). 1585m, 1520s,1490s, 1325m, and 1245m3420m, 3310m (NH str.),1600br,s, 156Om, 1430m, and1185m3416m, 3355m, 3270m (NHstr.), 1610br,s, 1530m,1496m, 1426m, and 1180mderivatives show a clear C-C1 stretching band at 795cm-l.The reversal of strength for amide I and amide I1bands, as seen here in 6-acetamido-9-benzyl-2-methyl-8-azapurine, was discussed re~ent1y.l~ Spectra of some1,2,3-triazoles, including the novel carbonimidoyl-guanidines, are given in the same table. lH N.m.r.spectra of six 6-amino-8-azapurines are given in Table 2.The chemical shifts of 2-H, 6-NH2, and the variousN-alkyl groups are very close to values determined forl7 J. H. Jones and E. C. Cragoe, J. Medicin. Chem., 1968, 11,l9 A. Albert, J.C.S. Perkin I, 1973, 2659.322.A. Albert and H. Taguchi, J.C.S. Perkin I, 1972, 449J.C.S. Perkin Irelated 8-azapurines.15 In the 2,7-dimethyl derivative,the 2-methyl signal occurs much further upfield thanthe 7-methyl signal, as may be expected.Other n.m.r.values are recorded in the Experimental section.TABLE 2lH N.m.r. spectra ca. 34'; solvent (CD,),SOJ of8-azapurines6-Amino-8--azapurine (2)R1 RZ Ri 7 Values 07-Me H H 1.72 (lH, 2-H), 2.26br b (2H, NH,), and7-Me H Me 2.38slbr (2H, NH,), 6-69 (3H, 7-Me),6-66 (3H, 7-Me)and 7.66 (3H, Me)(2H, CH,), 7.36 (3H, 2-Me), and 7.47(3H, Ac) c7-Me H CCI, 1-69br (2H, NH,), and 6-64 (3H, Me)9-CH2Ph H CCI, 1.2vbr (NH,), 2.61 (5H, Ph), and 4.098-Me H CHCI, 1.60brb (2H, NH,), 3.06 (lH, CHCI,),Tetramethylsilane as internal standard; all signals weresinglets. b Exchangeable in D20. 0 Assignments reversiblefor last two peaks.9-CH,Ph Ac Me 0.16 b (lH, CONH), 2.66 (6H, Ph), 4.19(2H, CH,)and 6-66 (3H, Me)EXPERIMENTAL1.r.spectra were taken (for mulls) with a Perkin-Elmer257 grating spectrometer. N.m.r. spectra were obtainedwith a Varian HA 100 (100 MHz) instrument. Specimenssaid to be identical were compared by (i) mixed m.p.determination where applicable, (ii) i.r. spectroscopy,N-hydrochloric acid (4 ml), and the mixture was filtered.The filtrate, mixed with Iw-sodium citrate (0.6 ml) andadjusted to pH 3 with 10N-sodium hydroxide, deposited6-amino-8-azapurine (2a) , identical with authentic material.Example of the Use of Acetamidine.-4Amino- l-methyl-1,2,3-triazole-5-carbonitrile (lb) (0.123 g, 0.001 mol),acetamidinium acetate 13 (0-354 g, 3 equiv.), and hexan-1-01(2 ml) were heated under reflux for 4 h.The solvent wasremoved a t 116" and 25 mmHg. The residue was slumedwith boiling ethanol (2 ml), and set aside at - 10" for 2 h.Filtration furnished 6-amino-2, 7-dimethy1-8-azapuvitte (7-amino-1 ,5-dimethyl-v-triazolo4,5-dpyrimidine) (2f) , m.p.301°, after recrystallization from water with carbon toremove fluorescent material.Alternative Syntheses of 2-MethyZ-8-azapurines (5-Methyl-v-triazolo4,5-d#yrimidines) .-4-Amino-3-benzyl-l, 2,3-tri-azole-5-carboxamidine hydrochloride (0.126 g, 0.0005 mol)and triethyl orthoacetate (3 ml) were strongly heatedunder reflux for 12 h. Volatiles were removed at 100"and 25 mmHg. The residue was boiled with N-aceticacid (2.6 ml) for 30 min, to effect a second stage of thereaction (as revealed by paper chromatography).Themixture deposited, on cooling, 6-amino-9-benzyl-2-methyl-8-azapurine (2h) (83), m.p. 266" (from 65 parts of ethanol).When acetic anhydride (1 ml) was added initially, 6-acet-awido-9-benzyl-2-methyl-8-azapurine (50) was obtained ,m.p. 153" (from 11 parts of ethanol) (Found: C, 59.4;H, 4.9; N, 29-7. C,,H,,N,O requires C, 59.6; H, 5.0;N, 29.8).Example of the Use of 2,2,2-Trichloroacetar~ridine.-4-Amino-2-methyl- 1,2,3-triazole-5-carbonitrile (0.123 g),TABLE 3Preparation of 6-amino-S-azapurines (2) from 4-amino-5-cyano-l,2,3-triazoles (1)Approx. Reflux Fwnd (96) Required ( 1 time Recrystallization Map. YieldProduct (2)Starting Sol- - triazoie vent= tTer* (h) Solvent (Parts) ("C) () - Formula - If7-Me8-Me9-Me7-Me8-Me7-MeS-Me7-Me8-Me9-CHaPh9-CHaPh9-CHaPhHHHHHHHHHHHBunBunHHHHHMeMeMeCCl,CCl,CCl,HHBBBBBHHHHBB0012012012012012016016016016012012020020012221420.522444301 v220266>320303 b18616712677 b p9Obdr88 4;9Obef65 b,'f'80828350614264 b,g20 b,i41.044-360.327.127-342.34.95-25.21.91-92.951.560.735-331-631.224.239.939.530.643.960.026-9641.94.95.01.92-691.836-031-424.439.831.0a B, butan-1-01, H, hexan-1-01, 0, octan-1-01, P, pyridine trihydrate.b Identical with authentic material. e Ref. 3. d A. Albert and K.Tratt, J . Ckem. Soc. (C), 1968.344. 8 Ref. 15. I A. Albert, J . Chem. SOC. (C), 1969,152. o Slight decomp. Much decomp. * Ref. 1.and (iii) comparative chromatography on two WhatmanNo. 1 papers, developed in (a) aqueous 3 NH,Cl, and (b)butanol-5~-acetic acid (7 : 3). Unless otherwise specified,material for analysis was dried a t 80" in air. ' Pyridinetrihydrate refers to the azeotrope, b.p. 92'.4-Amino- 1,2,3-triazole-5-~arbonitrile,~0 and its l-methyl,ls2-methylJ1* 3-methylJ21 and 3-benzyl l3 derivatives ; also4-acetamido- l-methyl- 1,2,3-triazole-5-~arbonitrile,1~ wereprepared as indicated here. Condensations of theseaminonitriles with amidines were carried out as specifiedin Table 3, with the results shown there.Example of the Use of Formamidine.-4-Amino- 1,2,3-triazole-carbonitrile (la) (0.109 g, 0.001 mol), formami-dinium acetate (0.31 g, 0.003 mol), and sieve-driedbutan-1-01 (2 ml) were heated under reflux a t 125' (bathtemp.) for 1 h.The solvent was removed a t 90" and 25mmHg. Water (1 ml) was added (pH 6.5) ; the suspensionwas refrigerated and the solid filtered off, triturated withtrichloroacetamidine 22 (0.483 g , 0.003 mol), acetic acid(0.18 g, 3 mol), and butanol (2 ml) were heated underreflux for 2 h. The solvent was removed a t 90" and 25mmHg; the residue triturated with water (2 mi) and filteredgave 6-amino-8-methyl-2-trichloromethyl-8-azapurine(7-amino-2-methyl-5-trichloromethyl-v-triazolo4, 5-dIpyrinzi-dine).DehaEogenation.-Tin(iI) chloride dihydrate (0.45 g,0.002 mol) dissolved in acetone (4 ml) was added dropwiseto a stirred suspension of 6-amino-8-methyl-2-trichloro-methyl-8-azapurine (0.534 g, 0.002 mol) in acetone (20 ml)a t 24O.After 18 h, the clear solution was evaporated todryness. N-Sodium hydroxide (16 ml) was added to dis-solve the tin. The product was filtered off, boiled brieflywith ethanol (15 ml), then set aside a t 24". Filtration re--4. Albert, J. Chem. SOC. ( C ) , 1969,2379.2o A. Albert and H. Taguchi, J.C.S. Perkin I , 1973, 1629.2z A. Albert and B. Paal, Chenz. and l a d . . 1974, 8741975 349moved some starting material (0.1 g). The filtrate wastaken to dryness and the residue recrystallized from 100parts of benzene (2 crops), giving 6-amino-2-dichloronzethyl-8-methyZ-8-azafiurine ( 7-amino-5-dich Zoromethyl-2-methyZ-v-triazolo4,5-d~~rimidine) (66), m.p.202" prior topartial resolidification (Found: C, 30.8; H, 2-6; C1, 30.5.C6'H,C1,N6 requires C, 30.9; H, 2.6; c1, 30.4).Example of the Use of NN'-Dibutylformamidine.-4-Amino- l-methyl- 1 , 2,3-triazole-5-carbonitrile (0- 123 g),NN'-dibutylformamidine 8 (0.47 g, 3 equiv.), acetic acid(0.18 g , 3 equiv.), and octan-1-01 (2 ml) were heated underreflux for 4 h (the solution remained clear throughout).Solvent was removed a t 135" and 25 mmHg. The crystal-line residue was transferred to a filter with light petroleum,then recrystallized from a little water, giving 6-butyl-amino-7-methyl-azapurine, m.p. 167" (lit.,, 167").Amino-3-benzyl- 1,2,3-triazole-5-carbonitrile (1.0 g, 0.005mol) and freshly prepared acetic formic anhydride (10 ml)were stirred a t 22" for 17 h.The solvent was removed a t40" (in vacuo). The residual crystals, stirred with water(8 ml), then filtered off, gave 3-benzyl-4-formamido-1,2,3-triazole-5-cavbonitrile (9 1 ) which, recrystallized fromethanol (6 parts), or benzene (280 parts), had m.p. 152"(Found: C, 58.4; H, 4.3; N, 31.0. C,,H,N,O requiresC, 58.1; H, 4.0; N, 30*8), 7 (CD,),SO 1.57 (lH, CHO),2.67 (5H, m, Ph), and 4-39 (2H, CH,). The nitrile (le)(1.0 g), acetic anhydride (1.0 g, 2 equiv.), and dried pyridine(10 ml) were heated under reflux for 4 h. The volatileswere removed at 100" and 25 mmHg. The residue, re-crystallized from a little ethanol and then from 150 partsof benzene, gave 4-acetamido-3-benzyl- 1,2,3-triazole-5-carbo-nitvile (75), m.p.153" (Found: C, 59.5; H, 4.8; N, 29.4.C,,H,,N,O requires C, 59.7; H, 4.6; N, 29.0).4-Acylamino-3-benzyl- 1,2,3-t~iazoZe-5-ca~bonitriles.- 4-Condensations with Guanidine.-Guanidine hydrochloride(0.24 g, 0.0025 mol) was boiled for 5 min with ethanolicO-5~-sodium ethoxide (5 ml), cooled, and filtered from NaCl.The filtrate and 4-amino-2-methyl- 1,2,3-triazole-5-carbo-nitrile (0.246 g, 0.002 mol) were heated under reflux for1 h. The ethanol was removed in vacuo a t 30". Theresidue was stirred with water (2 ml) and filtered giving1-( 4-amino-2-methyl- 1,2,3-triazol-5-ylcarbonimidoyl)guani-dine (7a) (85) which, recrystallized from 150 parts ofethanol, softened a t 177", evolved ammonia, and meltedabout 300" Found (for material dried at 24" and 25 mmHg) :C, 33.1; H, 5-7; N, 61.6. C,H,,,N, requires C, 33.0; H,5.5; N, 61.5y0, A,,,, (cation a t pH 7) 231sh and 286 nm(log E 2.97 and 3.92), '(C,D,N), 3.74slbr (2H, 4-NH2,exchangeable) , 5.35mbr (5H, side-chain, exchangeable),and 6-15 (3H, 2-Me). 1-(4-Amino-3-benzyl-1,2,3-triazoZ-5-y1carbonimidoyl)guan~dine (7b), prepared similarly, wastriturated with N-acetic acid (6 ml), filtered from a little2,6-diamino-9-benzyl-8-azapurine (1 3), the filtrate ad-justed to pH > 12 with N-sodium hydroxide, and theamidine (65) filtered off; i t softened, and evolved am-monia when heated, and melted a t ca. 270" Found (formaterial dried a t 24" and 25 mmHg): C, 51.3; H, 5.5;N, 43.2. C,,H14N, requires C, 51-15; H, 5.5; N, 43.4y0.This amidine (1 g) and butanol (8 ml) were heated underreflux for 1 h ; the suspension, taken to dryness a t 95"and 25 mmHg, gave 2,6-dinunino-9-benzyl-8-azapurine(5,7-diamino-3-benzyZ-v-t~iazolo4,5-d~yrimidzne) (2p) (9 1 yo)(from 80 parts of pyridine trihydrate, in 2 crops); verysparingly soluble in boiling ethanol (Found: C, 55.0; H, 4.6;N, 40.3. Cl1Hl1N, requires C, 54.8; H, 4.6; N, 40.6y0).I thank Mr. B. Paal for skilled experimental help.4/1836 Received, 6th September, 1974
机译:1975 345v-Tr iazol o C4.5-d J py r i m id i nes (8-Aza p you are i nes) .第十六部分 .通过用脒加热 4-氨基-l,2,3-三唑-5-甲腈 t(及其 N-烷基衍生物)制备 6-氨基-8-氮杂嘌呋酯作者:Adrien Albert,澳大利亚国立大学化学研究学院,澳大利亚堪培拉,26004-阿尼基-l.2.3-三唑-5-甲腈。及其1-、2-和3-甲基和3-苄基衍生物(1a-e)与甲脒、乙脒反应。2,2,2-三氯乙脒和NN'-二丁基甲脒得到相应的6-氨基-、6-氨基-2-甲基、6-氨基-2-三氯甲基和6-丁基氨基-8-氮杂嘌呤 (2)。分别。收率通常非常好,反应具有制备价值。6-阿尼基-9-苄基-2-甲基-8-氮杂嘌呤也是通过原乙酸三乙酯对4-氨基-3-苄基-L.2.3-三唑-5-甲烷胺的作用制备的(3)。将2-三氯甲基-8-氮杂嘌呤方便地脱卤为2-二氯甲基类似物.4-氨基-3-苄基I-l.2.3-三唑-5-甲腈(1 e)通过游离胍转化为1-(4-氨基-3-苄基-l,2,3-三唑-5-基甲酰亚胺基)胍(7b),可热环化为2.6-二氨基-9-苄基-8-氮杂嘌呤(2p)。比较了脒和胍反应的机理。和 lH n.m.r. 光谱被记录和讨论。已发现 6-氨基-8-氮杂嘌呤(8-氮杂腺嘌呤)抑制革兰氏阳性和阴性细菌,或抑制对其产生耐药性的癌细胞,大大减少该药物的作用。6-氨基化合物也V.A. Gershun, Tsitologiya, 1970, 12, 467.sistently numbered 4, to well comparison.being incorporated into the RNA;2-氨基-8-氮杂嘌呤-6-酮(8-氮杂鸟嘌呤) 在治疗期间 在该系列中,氨基三唑的氨基是con-D。Adomaitiene, T. N. 伊格纳托娃, D. Ya.Podgaetskaya,和 R。0. 罗布林, J. 0.兰彭,J .P. English、Q. P. Cole 和 J.D.史密斯和R.E.F.马修斯,Biochevz。J., 1967, 66,J. R. Vaughan, J. A ~ ~ ~ .-下摆。SOT., 1946, 67, 290.323.1 第十五部分,A. Albert, J .C .S .Perkin I , 1974, 2030346 J.C.S. Perkin 1烟草花叶496和马铃薯病毒的增殖速率,它抑制了真菌Neurospora crassa中腺苷-三磷酸的合成.7这些抑制通常被腺嘌呤逆转.3*s为了协助类似的生物学研究,寻求一种方便的6-氨基-8-氮杂嘌呤与多种取代基的合成方法。一种可能的途径似乎是 4-氨基-l,2,3-三唑与各种脒缩合,类似于 Taylor-Ehrhart 反应,其中 4-氨基嘧啶-5-甲腈和甲脒,在 1 3 5 O 下,得到 4-氨基嘧啶并[4,5-d]-嘧啶。* 该反应已推广到p y r r ~ l e , ~ oxazole,1° 和咪唑 lo 系列,于 1970 年被复述,此后用于将 2-氨基吡嗪-3-甲腈转化为 4-amin0~teridine.l~在本工作中,将 4-氨基-1,2,3-三唑-5-甲腈 (la) 及其 1-、2-和 3-甲基衍生物 (1b-d) 与乙酸甲脒缩合 at120“ 得到很好的收率 6-氨基-8-氮杂嘌呤1(1) ( 2)R R1 R2 K3a H a HHb l-Me b 7-Me H Hc 2-Me c 8-Me H Hd 3-Me d 9-Me H He 3-CH,Ph e 9-CH,Ph H Hf 7-Me H Meg 8-Me H Meh 9-CH2Ph H Mei 7-Me H CCI,j 8-Me H CQk 9-CHZPh H cc1,1 8-Me H CHCI,m 7-me Bun Hn 8-Me Bun Ho 8-me H NH2p 9-CH2Ph H NH及其7-甲基、8-和9-甲基衍生物(2a-d)。由相应的三唑(le)制备9-苄基类似物(2e);最佳收率(65%)来自短暂的不完全反应,而较长的加热得到的产物被高熔点,弱溶性物质污染,与起始材料的二聚体l3不同,并被怀疑是由戴恩斯反应引起的(通过消除am-rnonia,将脒与反应性亚甲基缩合).l4为了进一步追求这一想法,氨基三唑(le)的N-4-乙酰基-甲酰1衍生物也被类似地处理, 但前者基本保持不变,后者主要转化为8-氮杂嘌呤(2E)。一些氨基氰基三唑 (lb-d) 是 con-6 I.R. Schneider, Phytopathology, 1964, 44, 243.6 I. P. Zhuk, L. F. Didenko, and N.I. Gorbarenko, Biol.7 H. Urbanek, Acta SOC. bot.Pol., 1967, 36, 347.8 E. C .泰勒和 WA Ehrhart,J .Amer. Chem. SOL, 1960,8 E. C. Taylor 和 R. W. Hendress, J .Amer. Chem. Sac., 1966,Nauki, 1970, 108.82, 3138.87, 1996.用醋酸乙酰脒铵致密,得到相应的N-烷基化6-氨基-2-甲基-8-氮杂嘌呤(2f-h)的优异收率.6-氨基-9-苄基-2-甲基-8-氮杂嘌呤(2h)也通过加热4-氨基-3-苄基-l,2,3-三唑-5-甲酸苷a.苷1(3)原乙酸三乙酯;当醋酐也存在时,产物为6-乙酰氨基-9-苄基-2-甲基-8-氮杂嘌呤。将2,2,2-三氯乙酰脒鎓乙酸酯与氨基氰基三唑(lb-d)缩合,得到3个6-氨基-2-三氯甲基-8-氮杂嘌呤的中等收率;6-氨基-8-甲基-2-三氯甲基-8-氮杂嘌呤(2J)在冷丙酮中通过氯化锡(R1)部分脱卤为6-氨基-2-二氯甲基-8-甲基-8-氮杂嘌呤(21)。4-氨基-l-甲基-1,2,3-三唑-5-甲腈与甲脒乙酸酯的缩合(例如)可以通过5-甲酰亚胺基-间脒(4)或4-氨基亚甲基氨基-l-甲基-1,2,3-三唑-5-甲腈(5a)进行缩合。4-乙酰胺基-1-甲基-1,2,3-三唑-5-甲腈不能得到CH,Ph(3,115)a;R=血红蛋白;R= (4) 的 Me4-乙酰氨基衍生物,当在将母体三唑 (lb) 转化为 8-氮杂嘌呤 (2b) 的条件下用甲脒乙酸铵加热时。假设中间体(6a)的最可能形成是通过将三唑的4-氨基添加到脒离子的双键中,从而得到四面体中间体[例如(S)],这一过程平行于将氨的l5添加到4-二甲基氨基亚甲基氨基-1-甲基hyl-1,2,3-三唑-5-carbo-lo的阳离子中, J. P. Ferris 和 L. E. Orgel, J .阿梅夫。Chem. Soc., 1966, 88,3829.l1 E. C. Taylor 和 A. McKillop, 'The Chemistry of CyclicEnaminonitriles and o-Aminonitriles', Interscience, New York,1970.l* A. Albert and K. Ohta, J .Chem. SOC. ( C ) , 1971, 3727.18 A. Albert, J .Chem. SOC. ( C ) , 1970, 230.14 F. B. Dains, 0.0. Malleis 和 J. T. Meyers, J .美国化学学会, 1913, 35, 970;FB Dains、R. Irvin 和 C.G. Harrel, 同上,1921, 43, 613;F. B. Dains, R. Thompson, and W. F. Asendorf,同上,1922, 44, 2310;R. M. Roberts, J .Org. Chem., 1949,14, 2771975 347腈 (5b) 作为消除二甲基铵离子和闭环的初步方法,可对 6-氨基-7-甲基1-8-a~apurine.~~然而,以下实验证据在这里提出了这样的阳离子形式序列。噻唑(le)在乙酸乙脒铵收率为65%的条件下未能与盐酸乙脒反应。这一结果使得检查游离脒成为可取的。代替游离乙酰脒(判断太不稳定),用三唑(lc)加热三氯乙脒,得到28%的产率的相应8-氮杂嘌呤(2j)(该脒的大部分在反应中幸存下来);然而,醋酸盐的收率为61%,而盐酸盐则完全没有。因此,酸度在整个反应的一个阶段是有益的(在另一个阶段是有害的)。最佳酸度太温和,无法强制最终闭环(向-CN添加-NH),这很可能是纯粹的热。作为四面体中间体的替代物,可以假设微小比例的氨基三唑转化为其阳离子,该阳离子与(亲核)中性中间体结合,就像苯胺和盐酸苯胺的等分子前部分在二苯胺的工业合成中反应一样。然而,ofacetamidine(pKa 12-4)和这些氨基三唑腈的基本强度存在巨大差异(例如pK,-1.4为2-甲基衍生物16)。根据这一讨论(倾向于使用四面体中间体),缩合乙脒所需的更严格的条件(与甲脒相比)似乎主要是电子条件,而与三氯乙脒一起遇到的条件主要是空间条件。NN' -Di bu t y 如果 orm 乙酸脒和 t ria zoles(Ib 和 c)在 200“ 处消除丁胺,得到 6-丁基氨基-7(和 8)-甲基-8-氮杂嘌呤 (2m 和 n) ,通过第一-f ormed 1 -但基-6-亚氨基-1,6-二氢-8-氮杂嘌呤的自发 Dimroth 重排 .l二丁基甲脒的盐酸盐没有反应.与胍缩合-在文献中,胍(总是游离或作为碳酸盐)已被用于将邻氨基腈环化为二氨基嘧啶-氮杂类似物;这仅在吡咯啉、吡啶和吡嗪系列中完成。R=Z-Meb;R-3-CH2Ph[即1-(2-氨基吡嗪-3-基甲酰亚胺基)胍]仅从吡嗪-蝶啶转化中分离出来^.^^ 在这里,4-胍基-2-rn乙基-I,2,3-三唑-5-甲腈(LC)和游离胍在沸腾乙醇中很容易得到1-(4-氨基-2-甲基-L,2,3-t二唑-16 A.阿尔伯特,J.C.S. Perkin I, 1972, 461.l6 A. Albert, J.C.S. Perkin I, 1973, 1634.5-基甲酰亚胺1)胍 (7a) 当环闭合为 2,6-二氨基-8-甲基-8-氮杂嘌呤 (20) 时,其分解广泛尝试在丁醇、乙酸、N-盐酸或乙醇氢氧化钠中煮沸,或与醋酸胍在丁醇中煮沸。1-(4-氨基-3-苄基-1,2,3-三唑-5-基碳酰咪咪1)胍(7b),类似制备,易环化(在沸腾的丁醇中)至2,6-二氨基-9-苄基-8-氮杂嘌呤(2p)。结果发现,与乙酰脒醋酸铵不同,醋酸胍几乎没有与氨基氰基三唑反应的倾向 (1)。游离胍的更大成功,以及该试剂选择的不同途径,必须取决于胍更容易形成阴离子,这要归功于第三氨基的电子影响。这种阴离子很容易添加到氰基的正电碳中,从而产生(7)型中间体。物理常数.-1.r.8-氮杂嘌呤的光谱见表1。2,6-二氨基-g-苄基-8-氮杂嘌呤的谱图与2,6-二氨基-7(和8)-meth基-8-氮杂嘌呤的谱图相容.l8 表 11.r. 光谱 (Nujol)v,,/cm-l8-氮杂呋喃6-乙酰氨基-9-苄基-G甲基1,2,3-三唑4-乙酰氨基-3-苄基-6-氰基3220,3150br,w(NH链),1690br,m(CO,酰胺I),1590br,s(酰胺11),1316s,1300s(酰胺111),1220m和715m3420m,3315m, 3200 米(NHstr.)、1650 米、1575 米、1355 米、845 秒和 795 秒(C-Cl str.)3290br,m,3210m,1625br,s,1225s和795m(C-Cl str.)3506w、3370s、3290m、3260m、3130m(NH str.)、1685m.1610s(NH 弯道)、1585m 和 1430m3230s、3190s(NH str.)、2246m(E N str.)、1675br,s(CO str.)。1585m、1520s、1490s、1325m和1245m3420m、3310m(NH线)、1600br、156Om、1430m和1185m3416m、3355m、3270m(NHstr.)、1610br、s、1530m、1496m、1426m和1180m在795cm-l处显示出清晰的C-C1拉伸带。在6-乙酰氨基-9-苄基-2-甲基-8-氮杂嘌呤中观察到的酰胺I和酰胺I1条带的强度逆转被讨论 re~ent1y.l~ 一些1,2,3-三唑的光谱,包括新型的碳酰亚胺酰胍,在同一表中给出。表2中给出了6个6-氨基-8-氮杂嘌呤的lH N.m.r.谱图,2-H,6-NH2和各种N-烷基的化学位移非常接近于l7 J. H. Jones和E. C. Cragoe, J. Medicin测定的值。Chem., 1968, 11,l9 A. Albert, J.C.S. Perkin I, 1973, 2659.322.A. Albert and H. Taguchi, J.C.S. Perkin I, 1972, 449J.C.S. Perkin Irelated 8-azapurines.15 正如预期的那样,在2,7-二甲基衍生物中,2-甲基信号比7-甲基信号更远。其他 n.m.r.值记录在实验部分。表 2lH N.m.r. 谱图 [约 34'; 溶剂 (CD,),SOJ of8-氮杂嘌呤 6-氨基-8--氮杂嘌呤 (2)R1 RZ Ri 7 值 07-Me H H 1.72 (lH, 2-H)、2.26br b (2H, NH,) 和 7-Me H Me 2.38slbr (2H, NH,)、6-69 (3H, 7-Me)、6-66 (3H, 7-Me) 和 7.66 (3H, %Me)(2H, CH)、7.36 (3H, 2-Me) 和 7.47(3H, Ac) c7-me H CCI, 1-69br (2H, NH,) 和 6-64 (3H, Me)9-CH2Ph H CCI, 1.2vbr (NH,), 2.61 (5H, Ph) 和 4.098-me H CHCI, 1.60brb (2H, NH,), 3.06 (lH, CHCI,),四甲基硅烷作为内标;所有信号均为单线态。b 可在D20中交换。9-CH,Ph Ac Me 0.16 b (lH, CONH), 2.66 (6H, Ph), 4.19 (2H, CH,) 和 6-66 (3H, Me)EXPERIMENTAL1.r.用 Perkin-Elmer257 光栅光谱仪采集光谱(用于 mulls)。使用瓦里安 HA 100 (100 MHz) 仪器获得 N.m.r. 光谱。通过(i)在适用的情况下进行混合m.p.测定,(ii)i.r.光谱,N-盐酸(4ml)进行比较,并过滤混合物。滤液与Iw-柠檬酸钠(0.6ml)混合,用10N-氢氧化钠调节pH至3,沉积6-氨基-8-氮杂嘌呤(2a),与真实材料相同。将乙酰脒-4氨基-l-甲基-1,2,3-三唑-5-甲腈(lb)(0.123g,0.001mol)、乙酰脒乙酸铵13(0-354g,3当量)和己烷-1-01(2ml)在回流下加热4 h。将残留物用沸腾的乙醇(2ml)浸泡,并在-10“处放置2小时,过滤后提供6-氨基-2,7-二甲基1-8-氮杂脒(7-氨基-1,5-二甲基-v-三唑并[4,5-d]嘧啶)(2f),熔点301°,用碳从水中重结晶以除去荧光物质。替代 2-甲基Z-8-氮杂嘌呤(5-甲基-v-三唑并[4,5-d]#yrimidines).-4-氨基-3-苄基-l,2,3-三唑-5-甲脒盐酸盐(0.126 g,0.0005 mol)和原乙酸三乙酯(3 ml)在回流下强烈加热12 h。去除 100“ 和 25 mmHg 的挥发物。将残留物用N-乙酸(2.6ml)煮沸30分钟,以进行第二阶段的乙酸作用(如纸色谱法所示)。冷却时沉积的混合物,6-氨基-9-苄基-2-甲基-8-氮杂嘌呤(2h)(83%),熔点266“(来自65份乙醇)。当最初加入乙酸酐(1ml)时,得到6-乙酰基-9-苄基-2-甲基-8-氮杂嘌呤(50%),熔点153“(来自11份乙醇)(发现:C,59.4;H,4.9;N,29-7。C,,H,,N,O 需要 C, 59.6;H,5.0;N,29.8%)。2,2,2-三氯乙酸~啶.-4-氨基-2-甲基-1,2,3-三唑-5-甲腈(0.123 g)的用途实例,表34-氨基-5-氰基-l,2,3-三唑制备6-氨基-S-氮杂嘌呤 (2) (1)回流 Fwnd (96) 所需 (% 1 次重结晶图.产量 (2)起始溶胶- - triazoie vent= tTer* (h) 溶剂(部分) (“C) (%) - 公式 - If7-Me8-Me9-Me7-Me8-Me7-Me7-MeS-Me7-Me8-Me9-CHaPh9-CHaPh9-CHaPhHHHHHHHHHHHHHbunBunHHHHHHMeMeMeCCl,CCl,CCl,HHBBBBBHHHHBB0012012012012012016016016016012012020020012221420.522444301 v220266>320303 b18616712677 b p9Obdr88 4;9Obef65 b,'f'80828350614264 b,g20 b,i41.044-360.327.127-342.34.95-25.21.91-92.951.560.735-331-631.224.239.939.530.643.960.026-9641.94.95.01.92-691.836-031-424.439.831.0a B,丁-1-01,H,己烷-1-01,0,辛烷-1-01,P,吡啶三水合物。e 参考文献3.d A. Albert 和 K.Tratt, J .哎呀。Soc.(C),1968.344。8 参考文献 15.I A. 阿尔伯特,J .化学 SOC. (C), 1969,152.o 轻微失效。分解很多。* 参考文献 1.和 (iii) 两种 WhatmanNo. 的比较色谱法。1篇论文,在(a)3%NH,Cl水溶液和(b)丁醇-5~-乙酸(7:3)中显影。除非另有说明,否则用于分析的材料在空气中干燥 t 80”。吡啶三水合物是指共沸物,b.p.92'.4-氨基-1,2,3-三唑-5-~羰腈,~0及其l-甲基,ls2-甲基J1*3-甲基J21和3-苄基l3衍生物;另外,4-乙酰氨基-L-甲基-1,2,3-三唑-5-~氨基腈,1~如图所示制备。这些氨基腈与脒的缩合作用如表3所示,结果如表3所示。将甲脒-4-氨基-1,2,3-三唑-和甲腈(la)(0.109g,0.001mol),甲脒-醋酸二铵(0.31g,0.003mol)和筛干丁-1-01(2ml)在回流125'(浴温)下加热1小时。加入水(1ml)(pH 6.5);将悬浮液冷藏,滤去固体,用三氯乙脒22(0.483g,0.003mol)、乙酸(0.18g,3mol)、丁醇(2ml)研磨,加热回流2 h。除去 90“ 和 25mmHg 的溶剂;残留物用水(2 mi)研磨并过滤,得到6-氨基-8-甲基-2-三氯甲基-8-氮杂嘌呤(7-氨基-2-甲基-5-三氯甲基-V-三唑并[4,5-二吡啶])。将溶于丙酮(4ml)中的二水氯化锡(0.45g,0.002mol)滴加到6-氨基-8-甲基-2-三氯甲基-8-氮杂嘌呤(0.534g,0.002mol)在丙酮(20ml)中的搅拌悬浮液中。18小时后,将澄清溶液蒸发至干燥。加入N-氢氧化钠(16ml)以溶解锡。将产品过滤掉,用乙醇(15毫升)短暂煮沸,然后留出24英寸。过滤 re--4.Albert, J. Chem. SOC. ( C ) , 1969,2379.2o A. Albert and H. Taguchi, J.C.S. Perkin I , 1973, 1629.2z A. Albert and B. Paal, Chenz.和 l a d ..1974年,8741975 349移动了一些起始材料(0.1克)。取滤液干燥,用100份苯(2种作物)重结晶残渣,得到6-氨基-2-二氯茷-8-甲基Z-8-氮杂呋喃(7-氨基-5-二甲基唑甲基-2-甲基Z-v-三唑并[4,5-d]~~rimidine)(66%),m.p.202“,在部分再固化之前(发现:C,30.8;H,2-6;C1, 30.5.C6'H,C1,N6 需要 C, 30.9;H,2.6;c1,30.4%)。将NN'-二丁基甲脒-4-氨基-L-甲基-1,2,3-三唑-5-甲腈(0-123克)、NN'-二丁基甲脒8(0.47克,3当量)、乙酸(0.18克,3当量)和辛烷-1-01(2毫升)加热回流4小时(溶液始终保持清澈)。除去 135“ 和 25 mmHg 的溶剂。将结晶线残留物转移到装有轻石油的过滤器中,然后用少量水重结晶,得到6-丁基氨基-7-甲基-&氮杂嘌呤,熔点167“(lit.,,167”)。将氨基-3-苄基-1,2,3-三唑-5-甲腈(1.0g,0.005mol)和新鲜制备的乙酸甲酸酐(10ml)搅拌22“17小时,除去溶剂t40”(真空)。残留的晶体,用水(8ml)搅拌,然后过滤掉,得到3-苄基-4-甲酰胺基-1,2,3-三唑-5-cavbonitril(9 1%),从乙醇(6份)或苯(280份)重结晶,其熔点为152“(发现:C,58.4;H,4.3;N,31.0。C,,H,N,O 要求 C, 58.1;H,4.0;N, 30*8%), 7 [(CD,),SO] 1.57 (lH, CHO),2.67 (5H, m, Ph), 和 4-39 (2H, CH,)。将腈(le)(1.0g)、乙酸酐(1.0g,2当量)和干燥吡啶(10ml)在回流下加热4 h。挥发物在100“和25 mmHg处被去除。残留物由少量乙醇重结晶,然后由150份苯重结晶,得到4-乙酰氨基-3-苄基-1,2,3-三唑-5-甲酰硝基(75%),熔点153“(发现:C,59.5;H,4.8;N, 29.4.C,,H,,N,O 需要 C, 59.7;H,4.6;N, 29.0%).4-酰氨基-3-苄基-1,2,3-t~层氮Ze-5-ca~bonitriles.- 4-与胍缩合。 用乙醇O-5~-乙醇钠(5 ml)煮沸5 min,冷却,用NaCl过滤滤液,滤液和4-氨基-2-甲基-1,2,3-三唑-5-甲腈(0.246 g,0.002 mol)回流加热1 h。在真空中除去乙醇 a t 30”。用水(2ml)搅拌,过滤得到1-(4-氨基-2-甲基-1,2,3-三唑-5-基甲酰亚胺基)胍二(7a)(85%),由150份乙醇重结晶,软化177“,放出氨,熔化约300”[发现(对于在24“和25mmHg干燥的材料):C,33.1;H,5-7;N,61.6。C,H,,,N,需要C,33。0;H,5.5;N, 61.5y0], A,,,, (阳离子 a t pH 7) 231sh 和 286 nm(log E 2.97 和 3.92), '(C,D,N), 3.74slbr (2H, 4-NH2,可交换) , 5.35mbr (5H, 侧链, 可交换) 和 6-15 (3H, 2-Me)。1-(4-氨基-3-苄基-1,2,3-三唑Z-5-y1甲酰亚胺基)胍~丁(7b),用N-乙酸(6ml)研磨,从少许2,6-二氨基-9-苄基-8-氮杂嘌呤(1 3%)中过滤,滤液用氢氧化N钠至pH>12,滤去茶脒(65%);i t 在加热时软化并释放出氨,并熔化约 270“ [发现(原料干燥 a t 24” 和 25 mmHg):C,51.3;H,5.5;N,43.2。C,,H14N,需要C,51-15;H,5.5;N, 43.4y0]。将该脒(1g)和丁醇(8ml)加热回流1小时;将悬浮液取干 a t 95“和 25 mmHg,得到 2,6-二氨基-9-苄基-8-氮杂嘌呤(5,7-二氨基-3-苄基Z-v-t~iazolo[4,5-d]~yrimidzne) (2p) (9 1 yo)(来自 80 份吡啶三水合物,2 种作物);极微溶于沸腾的乙醇(发现:C,55.0;H,4.6;N,40.3。Cl1Hl1N,需要C,54.8;H,4.6;N,40.6y0)。我感谢包曉道格先生在实验上的娴熟帮助。[1836年4月收稿日期:1974年9月6日

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号