...
首页> 外文期刊>The FASEB Journal >Transport cycle intermediate in small multidrug resistance protein is revealed by substrate fluorescence
【24h】

Transport cycle intermediate in small multidrug resistance protein is revealed by substrate fluorescence

机译:Transport cycle intermediate in small multidrug resistance protein is revealed by substrate fluorescence

获取原文
获取原文并翻译 | 示例
           

摘要

Efflux pumps of the small multidrug resistance family bind cationic, lipophilic antibiotics and transport them across the membrane in exchange for protons. The transport cycle must involve various conformational states of the protein needed for substrate binding, translocation, and release. A fluorescent substrate will therefore experience a significant change of environment while being transported, which influences its fluorescence properties. Thus the substrate itself can report intermediate states that form during the transport cycle. We show the existence of such a substrate-transporter complex for the EmrE homolog Mycobacterium tuberculosis TBsmr and its substrate ethidium bromide. The pH gradient needed for antiport has been generated by co-reconstituting TBsmr with bacteriorhodopsin. Sample illumination generates a Delta pH, which results in enhanced ethidium fluorescence intensity, which is abolished when Delta pH or Delta Psi is collapsed or when the essential residue Glu-13 in TBsmr is exchanged with Ala. This observation shows the formation of a pH-dependent, transient substrate-protein complex between binding and release of ethidium. We have further characterized this state by determining the K-d, by inhibiting ethidium transport through titration with nonfluorescent substrate and by fluorescence anisotropy measurements. Our findings support a model with a single occluded intermediate state in which the substrate is highly immobile.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号