...
首页> 外文期刊>journal of applied physics >Effect of the capture coefficient in deephyphen;level transient spectroscopy measurements
【24h】

Effect of the capture coefficient in deephyphen;level transient spectroscopy measurements

机译:Effect of the capture coefficient in deephyphen;level transient spectroscopy measurements

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Underlying the conventional deephyphen;level transient spectroscopy (DLTS) method is the assumption of an exponential capacitance transient to the equilibrium state as a result of the thermal emission rate of free carriers from a filled trap energy level. This exponential capacitance transient may prove to be a good approximation for specific cases but, in general, the transient capacitance decay to the equilibrium state following a capture pulse is nonexponential. In this study nonexponential capacitance transients are shown to be encouraged by the presence of the freehyphen;carrier tail which spills over abundant free mobile carriers into the spacehyphen;charge region thus negating the abrupt junction depletion approximation and favoring both capture and emission of carriers. An upper limit for this effect is obtained here by assuming the carrier concentration in the relevant part of the spacehyphen;charge region which one has in the neutral region. This reduces the thermal emission rate by several orders of magnitude from what one would find with the assumption of pure exponential transient and neglecting spillover, as in the normal DLTS method. A particular case is considered, where both capture and thermal emission processes occur simultaneously in the Shockleyndash;Readndash;Hall kinetic equation for a singlehyphen;trap energy level. The variation of carrier occupancy with respect to time leads to a nonexponential capacitance transient decay to the equilibrium state.

著录项

  • 来源
    《journal of applied physics》 |1987年第11期|5055-5061|共页
  • 作者

    P. T. Landsberg; E. H. Shaban;

  • 作者单位
  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 英语
  • 中图分类
  • 关键词

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号