首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Heterocyclic transformations part 4: a facile transformation of 3-alkyl-6-methyl-1,3-oxazine-2,4(3H)-diones to 6-substituted 5-acetyluracils and 6-thioxo-1,3,5-triazine-2,4(1H,3H,5H)-diones
【24h】

Heterocyclic transformations part 4: a facile transformation of 3-alkyl-6-methyl-1,3-oxazine-2,4(3H)-diones to 6-substituted 5-acetyluracils and 6-thioxo-1,3,5-triazine-2,4(1H,3H,5H)-diones

机译:杂环转化第 4 部分:3-烷基-6-甲基-1,3-恶嗪-2,4(3H)-二酮向 6-取代的 5-乙酰尿嘧啶和 6-硫代-1,3,5-三嗪-2,4(1H,3H,5H)-二酮的简单转化

获取原文
获取外文期刊封面目录资料

摘要

J. CHEM. SOC. PERKIN TRANS. 1 1992 Heterocyclic Transformations Part 4: la A Facile Transformation of 3-Alkyl-6-methyl-I ,3-oxazine-2,4(3H)-diones to 6-Substituted 5-acetyluracils and 6-Thioxo-I ,3,5-triazine-2,4(1 H,3H,5H )-diones Harjit Singh," Pawan Aggarwal and Subodh Kumar Department of Chemistry, Guru Nanak Dev University, Amritsar- 143 005, India 3-Benzyl-6-methyl-I ,3-oxatine-2,4(3H) -dione 1 (R = CH,Ph) reacts under phase-transfer catalytic conditions with amides and thioamides to give 6-substituted 5-acetyluracils and with malonamide to give a bicyclic pyridopyrimidine system. Similar reactions of 1 with thioureas provide 6-thioxo- I83,5-triazine-2,4( 1 H,3H,5H) -diones, but with ureas, the substituents influence the mode of the reaction and the nature of the products.The synthetic scope and utility of these reactions has been examined. 6-Methyl-1,3-oxazine-2,4(3H)-dione1,a versatile intermediate, reacts chemoselectively with a variety of nucleophiles in synthetically useful reactions. Alkylamines react at C-2 of 1 to form intermediates 2 which cyclodehydrate (path a) to provide a regiospecific synthesis of 1-substituted 6-methyluracils 3.'* We predicted that if the amine nitrogen carried a substituent with appropriately placed functionality, the intermediate 4, could undergo alternative cyclizations, regiospecifically directed, to provide new synthetic strategies. Here we report that 6-methyl- 1,3-oxazine-2,4(3H)-diones 1 react with amides, thioamides, diamides, ureas and t hioureas under phase transfer catalytic conditions to give a facile and selective synthesis of a variety of heterocycles.Results and Discussion 3-Benzyl-6-methyl-l,3-oxazine-2,4(3H)-dione1 (R = CH,Ph) with formamide under phase transfer catalytic conditions (DMF-K2C03-tetrabutylammonium hydrogen su1fate)t at 40-50 "C, gave a compound (m.p. 135 "C, M + 244, mol. formula C13H12N203) the properties of which were consonant with either of the isomeric structures, 5-acetyl-3-benzyluracil5aand 3-benzyl-1-formyl-6-methyluracil6 (R' = H). In its 'H NMR spectrum, the appearance of one downfield 3 H singlet at 6 2.55 (COCH,) as compared with a 6-CH3 signal at 6 2.30 in 6- methyluracil'and the absence of a signal for 5-H (6 5.7)' of the latter favoured assignment of structure 5a for this compound.Its 13C NMR (APT)' showed six negative signals (five quaternary- Arc, C-5, 3 x C==Oand one methylene) and five positive signals (CH3, 3 x ArCH, C-6) which further corrobor- ated the structure 5a. Similarly, 1 (R = CH,Ph) reacted with acetamide, butanamide, benzamide, o-, m-,p-chlorobenzamide and urethane $ to give the respective 5-acetyluracils 5bh. It was observed that aliphatic amides formed 5 in better yields than aromatic amides. In case of o-chlorobenzamide, the ortho substituent adversely affected the yield of product. In a reaction of 1 (R = CH2Ph) with a heteroaromatic amide-nicotinamide; 3-benzyl-6-methyluracil3 (R = CH2Ph, R' = H) was formed along with 5-acetyl-3-benzyl-6-(3-pyridyl)uracil 5i.6-Carba-t 1 (R = CH,Ph) failed to react with formamide when heated (150-160 "C) or in DMF under reflux; with formamide in DMF containing NaH at ambient temperature it mainly decomposed and in MeCN in the presence of Et,N, it was unchanged; under PTC conditions (MeCN- K,CO,-tetrabutylammonium hydrogen sulfate), product 5 was formed in poor yields. 1Dehydration has been preferred over the elimination ofethanol from 5 (R = OEt). la 0 R-N MeOAN R' 3 6 Scheme 1 a, R' = H; b, R' ClC,H,; f, R' = m-ClC,H,; C5H4N 4 0 (S)O=C--R''I 00 " 8rs, 7 /lb H 5 = Me; c, R' = Pr; d, R' = Ph; e, R' = o-g, R' = p-CIC,H,; h; R' = OEt; i, R' = 3- moyl-1,3-dimethyluracil with 1 (R = CH,Ph) gave only 3 (R = CH,Ph, R' = H) (76).Compound 1 (R = H) due to ease in generation of the anion at N-3 under these PTC con- ditions, failed to react with amides. Compound 1 (R = CH,Ph) failed to react with an unsaturated amide (acrylamide), an N-alkylamide (N-methylacetamide) and stearamide. The thioamides, thioacetamide, thiobenzamide and o-chloro- thiobenzamide with 1 (R = CH,Ph) under the above PTC conditions gave 5b,5d and 5e respectively only in marginally better yields. The reactions of 1 (R = CH,Ph) with thioamides in NaH/DMF formed 5 in lower yields (< 10) and 1 (R = CH,Ph) decomposed. With malonamide under above PTC conditions 1 (R = CH,Ph) gave a compound (90) (m.p. 280 "C, M+ 283, mol. formula C,,H13N30,) the 'H NMR spectrum ofwhich showed the presence of Me, CH2Ph and olefinic-H (6 6.45) and lacked any additional CH, signal for CH2CONH2 of analogues of structures 5 and 3.Its 13C NMR (APT), showed five positive signals (Me, SH and 3 x ArCH) and eight negative signals (NCH,, Arc, C-4a, C-5, C-8a, 3 x C=O).From these data, it was asssigned the structure, 3-benzyl-5-methylpyrido4,3-dJ-pyrimidine-2,4,7( 1 H,3H,6H)-trione 8.Compound 1 (R = CH2-Ph) with succindiamide gave 3 (R = CH,Ph, R' = H) (60) and succinimide (25), m.p. 122-124 "C (lit.: 123-125 "C), but it did not react with glutaramide. The formation of 5,could involve initial attack of amide/ thioamide nitrogen* at C-2 of 1 (R = CH,Ph) to give the intermediate 7, which followed path b for cyclization (Scheme 1) and gave 6-substituted 5-acetyluracil derivatives 5.Formation of 3-benzyl-6-methyluracil3 (R = CH,Ph, R' = H) (m.p. 193- 195 "C; lit.,6 m.p. 194198 "C) in the reaction of nicotinamide could be ascribed to the competitive formation of 3-benzyl-6-methyl- 1 -(3-pyridylcarbonyl)uracil 6 (R = 3-py) through path a (Scheme 1) and ease of its subsequent hydrolysis to nicotinic acid (m.p. 235-237 "C; lit.,7 m.p. 236239 "C), which was isolated. In the reaction of 1 (R = CH,Ph) with malonamide, initially formed intermediate 9followed path b to give 10which further cyclodehydrated to 8. In the reaction of succindiamide, formation of five-membered ring (path c) 9dominated over six- membered ring formation (path b) and succinimide was eliminated to give 11, which cyclodehydrated to 3 (Scheme 2).This mode was further supported by failure of succindiamide to form succinimide under the same PTC conditions. 00 00 9 10 I c,n =2 0 8 O / --.+ -3 R=CH*Ph, R'= H H e + ph2,aH NO Me HZ 11 Scheme 2 * Under PTC conditions anion could be generated.5 J. CHEM. SOC. PERKIN TRANS. I 1992 Urea and 1 (R = CH2Ph) under solid-liquid PTC conditions (DMF-K,CO,-tetrabutylammonium hydrogen sulfate) at 40-50°C gave 3-benzyl-6-methyluracil 3 (R = CH,Ph, R' = H) in 44 yield. 1-Methylurea and 1 (R = CH,Ph) gave 3 (R = CH,Ph, R' = CH,) (25) along with another compound (< 1) (m.p. 101-102 "C, M+ 257), which from its 'H NMR spectrum was assigned the structure, 3-acetyl-l-benzyl-2- hydroxy-4-methyl-6( 1H)-pyridone 12.1,3-Dimethylurea with 1 (R = CH,Ph) under PTC conditions gave a multitude of products (TLC) from which one product (473, m.p.137-139 "C (M+ 247, mol. formula C12H13N303 from elemental analysis) could be isolated. From its spectral data, this compound could be assigned the structure, 3-benzyl- 13- dimethyl- 1,3,5-triazine-2,4,6( 1 H,3H,SH)-trione 13. 1 -Phenyl-urea did not react with 1 (R = CH,Ph) probably because of steric constraints. Thiourea with 1 (R = CH,Ph) gave a compound (55) (m.p. 224-226 "C, M+ 235, mol. formula C,,H,N,O,S) the 'H NMR spectrum of which exhibited two singlets at 6 4.95 (2 H) and 7.10 (5 H) due to NCH2Ph group and a 2 H exchangeable broad signal at 6 12.50. These data suggested either of the isomeric structures, 3-benzyl-6-thioxo-l,3,5-tri-azine-2,4(1H,3H,5H)-dione 14a (R = CH,Ph, R' = H) and 3-benzyl-6-imino-1,3,5-thiadiazine-2,4-dione15 (R = CH,Ph, R = H) for this compound. Its I3C NMR spectrum showed the presence of only three sp2 quaternary carbons S 134.69 (s, Arc), 146.23 (s, C=O)and 175.34 (s, GS) and corroborated the symmetrical structure 14ain which the two carbonyl carbon signals could overlap.Similarly, 1 (R = CH,Ph) with 1-methyl-2-thiourea and 1-ethylthiourea gave 3-benzyl-5-methyl- 6-thioxo-l,3,5-triazine-2,4(lH,3H,5H)-dione 14b (52, M + 249, m.p. 191-192 "C) and 3-benzyl-5-ethyl-6-thioxo-1,3,5-tri-+azine-2,4( 1 H,3H,SH)-dione 14c (50, M 263, m.p. 190-192 "C), respectively. Because of the presence of different substituents at N-1, N-3 and N-5 positions, compounds 14b and 14c became unsymmetrical and in their 13C NMR spectra exhibited four quaternary sp2 hybridised carbons 14b 6 134.55 Ihe OsC-NHR' 13 12 0 NR' -CH2COMe 7 0 0 OANAS-OANANRH H 14 15 Scheme 3 a, R = CH,Ph, R' = H; b, R = CH,Ph, R' = Me; c, R = CH,Ph, R' = Et; d, R = Me, R' = H; e, R = R' = Me; f, R = (CH,),CN, R' = H; g, R = (CH,),CN, R' = Me; h, R = (CH,),-CO,Et, R' = H; i, R = (CH,),CO,Et, R' = Me J.CHEM. SOC. PERKIN TRANS. I 1992 Table 1 Physical and spectral data of compounds 5a-i and 8 ~~~ ~ Reaction M.p. ("C) Yield temp. (I/"C) Compd. solvent () time r/h 6 He 5a 5b 5c 135 EtOH 150-152 CCHClJ 73 48 40-50 3 50-60 lo (TFA) 2.55 (3 H, s, COCH,), 5.0 (2 H, s,NCH,),7.10(5 H,s,ArH), 8.20(1 H, S, 6-H).(CDCI,) 2.20 (3 H, S, 6-CH3), 2.40 (3 H, s,COCH,),4.90(2 H,s,NCH,),6.80- 7.10(5 H,m,ArH), lO.lO(1 H, br,NH, exchanges with D,O) 1.90(2 H,m,CH,CH,),2.40-2.80(5 H, m, COCH,, 6-CH,), 5.0 (2 H, s, NCH,), 6.90-7.35 (5 H, m, ArH), 10.50 (1 H, br, NH, exchanges with (CDCIJ 1.0 (3 H, t, J 6, CH3), 1.33- 244 (1) 258 (97) 286 (53) 1675,1610 1705,1650 1700,1680, 1640 306.1 (5.76), 249.7 (4.1), 227.7 (4.3), 205.1 (6.3) 276.5 (1 1.4), 230.3 (1 1.2), 208.1 (13.1) 276.1 (12.1), 231.3 (11.9), 207.9 (14.2) sd 5e 210-212 MeOH 170-172 MeOH 38 (45)' 22 (26)' 50-60 lo 50-60 6.5 (CDCI, + TFA) 2.15 (3 H, s, COCH,), 5.05 (2 H, s, NCH,), 7.0- 7.25 (10 H, m, ArH) (CDCI,) 2.40(3 H, s,COCH,), 5.0 (2 H, s, NCH,), 7.10-7.40 (9 H, m, ArH), 10.0 (1 H, br, NH, exchanges with D,O) 320 (98) 354 (70) 1685,1620 1690,1660, 1640 282.9 (9.6), 234.1 (15.2), 209.5 (17.3) 287.1 (1 3.6), 253.3 (10.4), 214.1 (21.3) 51 sg 5h 5i * 8 195-197 MeOH 220-222 MeOH 280 MeOH 31 35 90 50-60 4.5 50-60 4.5 W50 3.5 D2O)(CDCI, + TFA) 2.35 (3 H, s, COCH,), 5.10 (2 H, s, NCH,), 7.10- 7.55 (9 H, m, ArH) (CDCI, + TFA), 2.35 (3 H, s, COCH,), 5.15 (2 H, s, NCH,), 7.10- 7.50 (9 H, m, ArH) (CDCI,) 1.30(3H,t, J7,CH3,2.25(3 H, S, COCHJ,4.20(2 H,q,J 7, OCHZ- CH,), 4.90 (2 H, S, NCH,), 6.85-7.20 (5 H, m, ArH), 10.45 (1 H, br, NH, exchanges with D,O) COCH,),5.0(2 H,s,NCH,),7.0-7.55 (9 H, m, ArH), 8.50 (1 H, br, NH, exchanges with D,O) (CDCI, + TFA) 2.95 (3 H, s, CH,), 5.10 (2 H, s, NCH,), 6.45 (1 H, s, (CDCI, 'H,-DMSO), 2.45 (3 H, S, 354 (100) 354 (100) 288 (75) 321 (100) 283 (100) 1690,1630 1690,1630 1705,1600 1695,1660 1680 284.7 (ll.l), 230.0 (18.0), 216.1 (23.9) 285.1 (1 2.4), 236.9 (20.8), 21 1.3 (20.7) 267.7 (10.6), 210.7 (14.9) 267.7 (10.6), 222.7 (16.2), 210.7 (19.4) 269.3, 244.1,209.5 8-H), 7.0-7.30 (5 H, m, ArH) a Elemental analyses: 5a (Found: C, 64.7; H, 4.75; N, 11.2.C,,H,,N,O, requires C, 64.93; H, 4.91; N, 11.47); 5b (Found: C, 64.8; H, 5.35; N, 10.6. Cl,H,4Nz03 requires C, 65.11; H, 5.42; N, 10.85); 5c (Found: C, 66.85; H, 6.25; N, 9.5. C,,H,,N,O, requires C, 67.13; H, 6.29; N, 9.79); 5d (Found: C, 70.86; H,4.92; N, 8.52. C,,H,,N,O, requires C, 71.25; H, 5.00, N, 8.75); 5e (Found C, 64.3; H, 4.25; N, 7.9.C,,H,,C1N2O3 requires C, 64.31; H, 4.21; N, 7.89); 5f (Found C, 64.75; H, 4.25; N, 7.4. C,,H,,CIN,O, requires C, 64.31; H, 4.21; N, 7.89); 5e (Found: C, 64.4; H, 4.3; N, 7.8. C,9H,,CIN,03 requires C, 64.31; H, 4.21; N. 7.89); Si (Found: C, 67.25; H, 5.0; N, 13.35. C1,H,,N,O, requires C, 67.28; H, 4.67; N, 13.08); 5h (Found: C, 62.3; H, 5.45; N, 9.5. C,,Hl,N20, requires C, 62.50; H, 5.55; N, 9.72); 8 (Found: C, 63.8; H, 4.4; N, 14.5. C,,H,,N,O, requires C, 63.60, H, 4.59; N, 14.84). 'Solvent of the crystallization. 'Yields in the reactions of thioamides. dAnother product isolated- 3-benzyl-6-methyluracil3 (14), m.p. 193-195 "C (CHC1,); m/z 216 (100); G,(CDCI, + 'H,-DMSO), 2.0 (3 H, s, CH,), 4.85 (2 H, s, NCH,), 5.35 (1 H, s, 5-H), 6.75-7.20 (5 H, m, ArH), 10.20 (1 H, br, NH, exchanges with D,O); vrnax/cm-l 1740 (M)and 1630 (GO); k,,(MeOH)/nm 260.5 (9.9 x lo3) of 209.7 (14.1 x lo3). "5a: 6,(CDCI, + C2Hb-DMS0)(APT) 29.98 (+ve, CH,), 42.35 (-ve, CH,), 107.22 (-ve, Arc), 126.20 (+ve, ArCH), 127.43 (+ve, ArCH), 127.82 (+ve, ArCH), 139.37 (-ve, C-5), 160.03 (-ve, C=O), 162.25 (+ve, 6-H), 163.92 (-ve, M),193.78 (-ve, C=O);5i GL~CDCI,+ DMSO) 31.15 (4,CH,), 42.96 (t, CH,), 112.76 (s, Arc), 122.31 (d, PyC,), 126.88 (d, ArCH), 127.65 (d, ArCH), 128.07 (d, ArCH), 135.31 (d, PyC,), 135.45 (s, C=C), 147.52 (d, PyC,), 150.22 (s, PyC,), 150.48 (d, PyC,), 152.12 (s, GO), 154.72 (s, C=C), 160.79 (s, Ca), 196.74 (s, C=O); 5h: Gc(CDCI,): 14.19 (9, OCH,CH,), 18.11 (9, COCH,), 43.97 (t, NCH,), 61.54 (t, OCH,), 106.43 (s, Arc), 127.78 (d, ArCH), 128.39 (s, ArCH), 128.92 (d, ArCH), 136.17 (s, C-5), 152.10, 153.70 (s, C=O, C-6), 160.08 (s, M),164.31 (s, C=O); ,(INEPT): 14.20 (+ve, CH,), 18.14 (+ve, COCH,), 43.97 (-ve, OCH,), 61.57 (-ve, NCH,), 127.78 (+ve, ArCH), 128.39 (+ve, ArCH) and 128.92 (+ve, ArCH).(Arc), 145.32 (C=O), 147.35 (C=O), 176.32 (CS); 14c: 6 134.55 Thus, contrary to the effect of substituents in thioureas in their 146.57 (C=O),(Arc), 145.12 (M), 175.32(C=S)with two very reactions with 1, the N-3 substituents in 1 had no adverse effect closely placed carbonyl signals. Compound 1 (R = CH2Ph) in these reactions. with 1,3-dimethyl-2-thiourea gave a multitude of products Initially, in the reactions of ureas and thioureas with N-alkyl- (TLC) from which only compound 12 could be isolated in < 1 6-methyl-1,3-0xazine-2,4(3H)-diones 1, the NH , group of yield.1-Phenylthiourea failed to react with 1 (R = CH2Ph) ureas/thioureas attacks 1 at C-2 to give the intermediate probably because of steric constraints. 16 which could follow three pathways b, c, d for cyclization To investigate the effect of substituents of 1, in their reactions (Scheme 3). In reactions of urea and 1-methylurea, 16 mainlywith t hioureas, 3-su bstituted- 1,3-oxazine-2,4( 3H)-diones 1 cyclized through path b to give 17 (R = CH2Ph) which then R = Me, (CH2),CN, (CH2),C02Et were obtained from lost isocyanate to form 3-benzyl-6-methyluracil 3. The iso- 6-methyl-1,3-0xazine-2,4(3H)-dione and appropriate halides.cyanates were trapped in ammonia solution and their respective Compound 1 R = Me, (CH,),CN, (CH,),CO,Et with ureas were isolated. In the reaction of 1,3-dimethylurea where thiourea and 1-methylthiourea gave corresponding 6-thioxo- cyclization route b in 16 was hindered, it followed path c to 1,3,5-triazine-2,4(1H,3H,SH)-dione 14d-i in 42-57 yields. form 3-benzyl-1,3,5-triazine-2,4,6(1H,3H,SH)-trione 13.In the 1142 J. CHEM.SOC. PERKIN TRANS. i 1992 Table 2 Physical and spectral data of compounds 13 and 14a-i Reaction Compd. M.p. ("C) solvent Yield () temp. (I/"C) time r/h 6 H' 13 14a 14b 14C 14d 14e 14f 14g 14h 137-139 CCHCl3I 224-226 MeOH 191-192 MeOH 190-192 MeOH 252 MeOH 209-210 MeOH 209 MeOH 169 MeOH 89-90 MeOH 4 55 52 52 57 55 49 48 42 40-50 IS 40-50 C2.51 5-c51 50-60 51 70-80 5 70-80 6 70-80 8 70-80 8 70-80 8 (CDCI,) 3.15 (6 H, s, 2 x NCH,), 4.80 (2 H, s, NCH,), 6.85-7.15 (5 H, m, ArH) s, NCH,), 7.10(5H, s, ArH), 12.50(2H, br, 2 x NH, exchanges with D,O) s, NCH,), 4.85 (2 H, s, NCH,), 7.0-7.35(5H,m,ArH),12.65(1H,br,NH, exchanges with D,O) (CDCl, + TFA) 1.34 (3 H, t, CH,), 4.40 (2 H, q, CH,), 5.12 (2 H, s, NCH,), 7.37-7.41 (5 H, m, ArH) (CDCI, + TFA) 3.40 (3 H, s, NCH,) (CDCI, + C2H6-DMSO) 4.95 (2 H, (CDCI, + 2H,j-DMSO) 3.50 (3 H, (CDCI, + TFA) 3.35 (3 H, s, NCH,), 3.70 (3 H, s, NCH,) 2 x CH,), 4.25 (2 H, t, J 7, NCH,) (CDCI, + TFA) 2.0-2.80 (4 H, m, (2 H, t, J7, NCH,) (CDCI, + TFA), 1.35 (3 H, t, J 7, OCH,CH,), 1.90-2.70 (4 H, m, (CDCl, + TFA), 2.10-2.70 (4 H, 2 x CH,), 3.80 (3 H, S, NCH,), 4.25 247 (100) 235 (79) 249 (92) 263 (95) 159 (34) 173 (100) 212 (25) 226 (86) 259 (56) 1700,1675 1740, 1655 1740, 1660 1760, 1900 1750, 1675 1740, 1685 2250, 1745, 2240, 1735, 1700 1680 1715, 1680 208.7 (10.3) 269.9 (27.3), 207 (12.6) 267.9 (25.8), 208.3 (12.5) 270.7 (20.4), 207.7 (9.7) 268.9 (21.4), 204.9 (5.7) 267.3 (17.1), 206.1 (5.2) 270.3 (20.3), 206.9 (6.95) 167.5 (22.2), 228.5 (3.4) 270.1 (12.6) 2 x CH,), 3.9W.50 (4 H, m, NCH, and OCH,) 14i 89-90 42 70-80 7 (CDCl,) 1.30 (3 H, t, J 7, OCH,CH,), 273 (63) 1730, 1670 267.5 (20.8), 228.9 (3.0) CCHC13I 1.80-2.50 (4 H, m, 2 x CH,), 3.60 (3 H, s, NCH,), 3.80-4.30 (4 H, m, NCH, and OCH,), 10.0 (1 H, br, NH, exchanges with D,O) ~~~~~ Elemental analyses: 13 (Found: C, 58.1; H, 5.3.C,,H,,N,O, requires C, 58.29; H, 5.26); 14a (Found: C, 51.2; H, 4.0 N, 17.45. C,,H,N,O,S requires C, 51.06; H, 3.82; N, 17.87);14b (Found: C, 53.2; H, 4.35; N, 16.4.C, 1HllN302S requires C, 53.01; H,4.41; N, 16.86); 14d (Found: C, 30.1; H, 3.05; N, 26.1. C4H,N,02S requires C, 30.18; H, 3.14; N, 26.41); 14e (Found: C, 34.1; H, 3.9. C5H,N,02S requires C, 34.68; H, 4.04); 14f (Found: C, 39.4; H, 3.45; N, 26.15. C,H8N4O,S requires C, 39.62; H, 3.77; N, 26.41); 14g (Found: C, 42.2; H, 4.45. C8H1,,N.,O,S requires C, 42.47; H, 4.42); 14i (Found: C, 43.6; H, 5.3; N, 15.1. C,,H,,N,O,S requires C, 43.95; H, 5.49; N, 15.38); Solvent of crystallization.' 14a: Gc(CDC1, + DMF) 42.17 (t,NCH,) 125.71, 126.23, 126.57(d,ArCH), 134.69(s,ArCH), 146.23(s,-), 17~134(C=!3);Gc(INEPT)(CDC1,+ DMF)42.17(-ve,CH2) 125.71, 126.23,126.57(+ve, ArCH); 14b:G,(CDCl, + DMF) 33.18 (q, CH,), 44.0 (t, CH,), 126.50, 127.09, 127.32 (d, ArCH), 134.63 (s, Arc), 145.32(s, C=O), 147.35 (s, C=O), 176.05 (s, CS); G,(INEPT)(CDCl, + DMF) 33.18 (+ve.CH,), 44.0 (-ve, CH,), 126.50, 127.09, 127.32 (+ve, ArCH); 14c Gc(CDC1, + DMF) 9.86 (9, CH,), 41.0 (t, CH,), 43.35 (t, CH,), 125.85, 126.49, 126.62 (d, ArCH), 134.55 (s, ArC), 145.12 (s, C=O), 146.57 (s, GO), 175.32 (s, C=S), F,(INEPT)(CDCI, + DMF) 9.83 (+ve, CH,), 40.99 (-ve, CH,), 43.37 (-ve, CH,), 125.84, 126.40, 126.62 (+ve, ArCH); 14g: G,(dioxane + CDCI,) 17.40 (CH,), 24.06 (CH,), 34.78 (CH,), 41.35 (CH,), 119.31 (C=N), 146.80 (GO), 148.32 (C=O), 176.31 (GO), S,(INEPT)(dioxane + CDCI,): 14.70 (-ve, CH,), 24.06 (-ve, CH,), 34.78 (-ve, CH,) and 41.35 (-ve, CH,).reactions of thioureas with 1 (R = alkyl), the intermediate 16 could straightaway cyclize by route c to form the triazine derivatives 14. But the absence of this mode in the reactions of 1 with biprotic ureas pointed to the alternative mode involving the participation of sulfur in 16 (Scheme 3; path d) followed by elimination of the CH,COCH3 group* to give the thiadiazine 1415, which in the presence of added base (K2C03)could undergo 5 Dimroth rearrangement' to 14. The observation that S-Scheme 4 methylthiourea failed to react with 1 further supported the mode d of reaction. ExperimentalThe mass spectra of 6-substituted 5-acetyl-3-benzyluraciis M.p.s were determined in capillaries and are uncorrected.'H 5, in general constitute loss of (i) PhCH, (path x), (ii) and I3CNMR spectra were recorded on JEOL-JNM (60 MHz)PhCH=N=C--O+ ion (path y) attended by an additional and Brucker AC 200 instruments for solutions in CDCI,/*H,- H-shift and (iii) CH, (path z) (Scheme 4). With 6-thioxo- DMSO or TFA using TMS as internal standard. IR spectra 1,3,5-triazine-2,4(1H,3H,SH)-diones 14, the major mass were recorded for KBr pellets on a Pye-Unicam SP3-300spectral fragmentation modes constitute, (i) the loss of SH to spectrophotometer and UV spectra on a Shimadzu-UV-240generate M+ -33 ions, (ii) the formation of RNCO+ ions instrument. Mass spectra were run on JEOL JMS-D-300 and +(path x) and (iii) the loss of HNCS to give a peak at M -59 VG micromass 7070F machines operating at 70 eV at CDRI, (path y) (Scheme 4).However in compounds 14b, 14e, 14g and Lucknow and RSIC, Chandigarh. Thin layer chromatography 14i, the loss of CH,N=C=S is not observed (path z). was performed on precoated TLC plates of silica gel G or silica gel 60 HFZs4. Column chromatography was carried out using silica gel (60- 120). * In the reaction of 1 (R = CH,Ph) with thiourea, the effluent gases were passed through aqueous 2,4-dinitrophenylhydrazine to give acetone 2,4-dinitrophenylhydrazone,m.p. 127 "C m.p. 128 "C). Reactions of 6-Methyl-1,3-0xazine-2,4-(3H)-diones1 with J. CHEM. SOC. PERKIN TRANS. I 1992 Am ides and Th ioamides: General Procedures.-3 -Benzyl-6-methyl-1,3-0xazine-2,4(3H)-dione (2.2 g, 0.01 mol), alkane/ arene amideslthioamides (0.012 mol), anhydrous K2C03 (3.3 g, 0.024 mol) and tetrabutylammonium hydrogen sulfate ( -20 mg) were taken up in DMF (20 cm3) and the mixtures stirred at 40-80 "C.The progress of the reactions was monitored by TLC. After completion of the reaction (3-10 h), the reaction mixture was neutralised with dilute HCl and the suspended solid was filtered off and washed with ethyl acetate. Combined filtrate and washings were evaporated under reduced pressure. The residue was column chromatographed over silica gel with benzene and benzene-ethyl acetate as eluents to give, 5-acetyluracil deriva- tives (Table 1).Synthesis of 3-Substituted 6-Methyl-1,3-oxazine-2,4(3H)-dione Derivatives 1 R = (CH,)3CN, (CH,),CO,Et.-Method A. 6-Methyl-1,3-oxazine-2,4(3H)-dione(1.27 g, 0.01 mol), was stirred in acetonitrile (50 cm3) containing anhydrous potassium carbonate (4.1 g, 0.03 mol) and triethylbenzylammonium chloride (-20 mg) for 1 h at ambient temperature. 4-Chloro bu tyronitrile/ethy1 4-chloro bu t yra te (0.012 mol) was then added and the reaction mixture was stirred. After com- pletion of the reaction (TLC, 18-25 h), the solid was filtered off and washed with acetonitrile. The filtrate and washings were combined and the solvent was distilled off to leave a residue. This was column chromatographed over silica gel using benzene and benzene-ethyl acetate as eluents to give compounds 1R = (CH2)3CN, (CH,)3CO,Et.Method B. 4-Chlorobutanonitrile/ethyl 4-chlorobutyrate (0.012 mol) was refluxed in acetone (dry) with sodium iodide (0.013 mol) for 1 h. 6-Methyl-1,3-oxazine-2,4(3H)-dione(0.01 mol) was then added along with anhydrous potassium carbonate (0.03 mol) and the reaction mixture was refluxed. After completion of the reaction (TLC, 8 h), the mixture was worked up as above. 3-(3-Cyanopropyl)-6-methyl-1,3-oxazine-2,4( 3H)-dione 1 R = (CH,),CN: (A) 18 h (50 "C), (45); (B) 8 h (55), m-p. liquid; m/z 194 (M', 6);G,(CDC13) 1.80-2.65 (7 H, m, CH3 and 2 x CH,), 4.0 (2 H, t, J 7, NCH,) and 5.85 (1 H, s, CH); 1143 3.80-4.40 (4 H, m, NCH, and OCH,) and 5.75 (1 H, s, H); v,,,(CHC13)/cm-' 1780 (M),1750 (C=O) and 1720 (0); h,,,(MeOH)/nm 227.5.Reactions of 3-alkyl-6-methyl-1,3-0xazine-2,4(3H)-diones1 with ureas and thioureas. These were performed as those with amides and the data for the products formed are recorded in Table 2. Acknowledgements We thank UGC (India) for financial assistance, CDRI (Lucknow), RSIC (Chandigarh) and TIET (Patiala) for mass spectral and elemental analyses. Financial assistance from UGC under COSIST and SAP programmes is gratefully acknowledged. References 1 (a) Part 3. S. Kumar, S. S. Chimni and H.Singh, J. Chem. SOC., Perkin Trans. 1, 1991, 1391 and references therein; (b) S. Ahmed, R. Lofthouse and G. Shaw, J. Chem. SOC., Perkin Trans. 1, 1976, 1969; (c) T. Kato and N. Katagiri, Heterocycles, 1980, 14, 1333; (4 M.Sainsbury in Comprehensive Heterocyclic Chemistry, Synthesis and uses of Heterocyclic Compoun ed. A. R. Katritzky and C. W. Rees, 1984, vol. 3, 995; (e) T. Kinoshita, K. Takeuchi, M. Kondoh and S. Furukawa, Chem. Pharm. Bull., 1989, 37, 2026; cf) H. Singh, P. Aggarwal and S. Kumar, Indian J. Chem., Sect. B, 1989, 28, 950; (g) H. Singh, P. Aggarwal and S. Kumar, J. Chem. Res., 1991, (S)362. 2 J. P. Kokko, L. Mandell and J. H. Goldstein, J. Am. Chem. SOC., 1962,84,1042. 3 J. K. M. Sanders and B. K. Hunter, Modern NMR Spectroscopy, Oxford University Press, Oxford, 1987, p. 74. 4 H. T. Clarke and L. D. Behr, Org. Syntheses, Coll. Vol. 2, 1943,562. 5 P. Singh, K. Deep and H. Singh, J. Chem. Res., 1984, (S)71; (M) 0636. 6 The Chemistry of Heterocyclic Compounds; The Pyrimidines, Part 1, ed. D. J. Brown and S. F. Mason, Interscience, 1962,534. 7 M. Goese, J.Am. Chem. SOC., 1941,63,2283. 8 K. Hirota, K. A. Watanabe and J. J. Fox, J. Org. Chem., 1978, 43, 1193 and references therein. 9 A Text-Book of Practical Organic Chemistry by A. I. Vogel, ELBS and v,,,(CHC13)/cm-' 2250 (C=N), 1750 (C=O) and 1700 (0);Longman, 1975,346. h,,,(MeOH)/nm 227.9. 3-(Ethoxycarbonylpropyl)-6-methyG1,3-oxazine-2,4(3H)-dione 1 R = (CH,),CO,Et: (A) 25 h (50 "C) (35); (B) 8 h (55); m.p. 52 "C (CHC13); m/z 241 (M+,45); G,(CDC13) 1.25 (3 H, t, J 7, OCH,CH3), 1.80-2.50 (7 H, m, 2 x CH,, CH3), Paper 1/06487H Received 30th December 199 1 Accepted 10th February 1992
机译:J. CHEM. SOC. PERKIN TRANS. 1 1992 杂环转化第 4 部分:la 3-烷基-6-甲基-I ,3-恶嗪-2,4(3H)-二酮向 6-取代的 5-乙酰脲和 6-硫代-I ,3,5-三嗪-2,4(1 H,3H,5H )-二酮的简单转化 Harjit Singh,“Pawan Aggarwal 和 Subodh Kumar 阿姆利则 Guru Nanak Dev 大学化学系 - 143 005, 印度 3-苄基-6-甲基-I ,3-氧沙丁-2,4(3H) -二酮 1 (R = CH,Ph) 在相转移催化条件下与酰胺和硫酰胺反应得到 6-取代的 5-乙酰脲,并与丙二酰胺反应得到双环吡啶嘧啶体系。1与硫脲的类似反应得到6-硫代-I83,5-三嗪-2,4(1H,3H,5H)-二酮,但与尿素反应,取代基影响反应方式和产物的性质。已经研究了这些反应的合成范围和效用。6-甲基-1,3-恶嗪-2,4(3H)-二酮1是一种多功能中间体,在合成有用的反应中与多种亲核试剂发生化学选择性反应。烷基胺在 1 的 C-2 处反应形成中间体 2,其环脱水物(路径 a)提供 1-取代的 6-甲基尿嘧啶 3 的区域特异性合成。* 我们预测,如果胺氮携带具有适当放置官能团的取代基,中间体 4 可以进行区域特异性定向的替代环化,以提供新的合成策略。本文报道了6-甲基-1,3-恶嗪-2,4(3H)-二酮1在相转移催化条件下与酰胺、硫代酰胺、二酰胺、尿素和硫脲反应,从而轻松、选择性地合成多种杂环。结果与讨论 3-苄基-6-甲基-l,3-恶嗪-2,4(3H)-二酮1 (R=CH,Ph)与甲酰胺在相转移催化条件下(DMF-K2C03-四丁基铵氢su1fate)t在40-50“C下,得到一种化合物(熔点135”C,M+244,分子式C13H12N203),其性质与5-乙酰基-3-苄基尿嘧啶5a和3-苄基-1-甲酰基-6-甲基尿嘧啶6(R'=H)中的任一异构体结构一致。在其“H NMR谱图中,与6-甲基尿嘧啶中6 2.30处的6-CH3信号相比,在6 2.55(COCH)处出现一个下场3 H单线态”,并且后者的5-H(6 5.7)没有信号,有利于为该化合物分配结构5a。其13C NMR(APT)'显示6个负信号(5个季弧,C-5,3×C==O和1个亚甲基)和5个正信号(CH3,3×ArCH,C-6),进一步证实了结构5a。类似地,1 (R = CH,Ph) 与乙酰胺、丁酰胺、苯甲酰胺、邻、间、对氯苯甲酰胺和聚氨酯 $ 反应,得到相应的 5-乙酰尿嘧啶 5bh。据观察,脂肪族酰胺的形成比芳香酰胺的产量更高。在邻氯苯甲酰胺的情况下,邻位取代基对产品的收率产生不利影响。在 1 (R = CH2Ph) 与杂芳香族酰胺-烟酰胺的反应中;3-苄基-6-甲基尿嘧啶3 (R = CH2Ph, R' = H) 与 5-乙酰基-3-苄基-6-(3-吡啶基)尿嘧啶 5i.6-Carba-t 1 (R = CH,Ph) 在加热 (150-160 “C) 或在 DMF 中回流时未能与甲酰胺反应;在含有NaH的DMF中,甲酰胺在室温下主要分解,在MeCN中,在Et,N存在下,甲酰胺不变;在PTC条件下(MeCN-K,CO,-四丁基硫酸氢铵),产物5的产值较差。1脱水优于从5(R=OEt)消除乙醇。la 0 R-N% MeOAN R' 3 6 方案 1 a, R' = H;b, R' ClC,H,;f, R' = m-ClC,H,;C5H4N 4 0 (S)O=C--R''I 00 “ 8rs, 7 /lb H 5 = Me;c, R' = Pr;d, R' = Ph;e, R' = o-g, R' = p-CIC,H,;h;R' = OEt;i,R'=3-甲基-1,3-二甲基尿嘧啶与1(R=CH,Ph)仅得到3(R=CH,Ph,R'=H)(76%)。化合物 1 (R = H) 由于在这些 PTC 条件下容易在 N-3 处生成阴离子,因此未能与酰胺反应。化合物 1 (R = CH,Ph) 未能与不饱和酰胺(丙烯酰胺)、N-烷基酰胺(N-甲基乙酰胺)和硬脂酰胺反应。硫代酰胺、硫代乙酰胺、硫代苯甲酰胺和邻氯硫代苯甲酰胺(R = CH,Ph)分别为5b、5d和5e,收率略高。1 (R = CH,Ph) 与硫酰胺在 NaH/DMF 中的反应在较低的产率下形成 5 个 (< 10%) 和 1 个 (R = CH,Ph) 分解。在上述PTC条件下用丙二酰胺1(R=CH,Ph)得到化合物(90%)(熔点280“C,M+283,分子式C,,H13N30,)'H NMR谱图显示存在Me,CH2Ph和烯烃-H(6 6.45),并且没有任何额外的CH,用于CH2CONH2结构5和3的类似物的信号。 显示 5 个正信号(Me、SH 和 3 x ArCH)和 8 个负信号(NCH、、Arc、C-4a、C-5、C-8a、3 x C=O)。从这些数据中可以看出,3-苄基-5-甲基吡啶并[4,3-dJ-嘧啶-2,4,7(1 H,3H,6H)-三酮8.化合物1(R=CH2-Ph)与硫酰胺得到3(R=CH,Ph,R'=H)(60%)和琥珀酰亚胺(25%),熔点122-124“C(lit.:123-125”C),但未与戊二酰胺反应。5的形成可能涉及酰胺/硫酰胺氮*在C-2 of 1 (R = CH,Ph)处的初始攻击,得到中间体7,其遵循路径b进行环化(方案1)并得到6-取代的5-乙酰尿嘧啶衍生物5.形成3-苄基-6-甲基尿嘧啶3 (R = CH,Ph, R' = H) (m.p. 193- 195“C;lit.,6 m.p. 194198 “C)在烟酰胺反应中可归因于3-苄基-6-甲基-1-(3-吡啶基羰基)尿嘧啶6(R=3-py)通过路径a(方案1)的竞争性形成,以及其随后水解为烟酸的难易程度(m.p.235-237”C;lit.,7 m.p. 236239 “C”),这是孤立的。在1(R=CH,Ph)与丙二酰胺反应时,最初形成中间体9,顺路径b得到10,进一步环脱水至8。在succindiamide的反应中,五元环(路径c)9的形成占主导地位,六元环的形成(路径b)和琥珀酰亚胺被消除,得到11,环脱水成3(方案2)。在相同的PTC条件下,succindiamide未能形成琥珀酰亚胺,进一步支持了这种模式。00 00 9 10 I c,n =2 0 8 O / --.+ -3 R=CH*Ph, R'= H H e + ph2,aH NO Me HZ 11 方案 2 * 在 PTC 条件下可生成阴离子.5 J. CHEM. SOC. PERKIN TRANS.I 1992 尿素和1(R=CH2Ph)在固液PTC条件下(DMF-K,CO,-四丁基硫酸氢铵)在40-50°C下得到3-苄基-6-甲基尿嘧啶3(R=CH,Ph,R'=H),收率为44%。1-甲基脲和1(R=CH,Ph)得到3(R=CH,Ph,R'=CH,)(25%)和另一种化合物(<1%)(m.p.101-102“C,M+ 257),从其'H NMR谱图中分配结构,3-乙酰基-l-苄基-2-羟基-4-甲基-6(1H)-吡啶酮12.1,3-二甲基脲与1(R=CH,Ph)在PTC条件下得到多种产物(TLC),其中一种产物(473, M.P.137-139 “C(M+ 247,分子式C12H13N303来自元素分析)可以被分离出来。从其光谱数据可以看出,该化合物的结构为3-苄基-13-二甲基-1,3,5-三嗪-2,4,6(1 H,3H,SH)-三酮13。1-苯基脲不与1反应(R = CH,Ph),可能是由于空间限制。硫脲与1(R=CH,Ph)得到化合物(55%)(熔点224-226“C,M+235,mol。式C,,H,N,O,S)的'H NMR谱图在6 4.95 (2 H)和7.10 (5 H)处显示两个单线态,由于NCH2Ph基团,在6 12.50处显示2 H可交换宽信号。这些数据表明该化合物具有3-苄基-6-硫代-l,3,5-三嗪-2,4(1H,3H,5H)-二酮14a(R = CH,Ph,R'=H)和3-苄基-6-亚氨基-1,3,5-噻二嗪-2,4-二酮15(R = CH,Ph,R = H)中的任一异构体结构。其I3C NMR谱图显示仅存在三种sp2季碳[S 134.69 (s, Arc)、146.23 (s, C=O)和175.34 (s, GS)],并证实了两个羰基碳信号可能重叠的对称结构14ain。类似地,1(R=CH,Ph)与1-甲基-2-硫脲和1-乙基硫脲分别得到3-苄基-5-甲基-6-硫代-l,3,5-三嗪-2,4(lH,3H,5H)-二酮14b(52%,M + 249,m.p.191-192“C)和3-苄基-5-乙基-6-硫代-1,3,5-三-+嗪-2,4(1 H,3H,SH)-二酮14c(50%,M 263,m.p.190-192”C)。由于在N-1、N-3和N-5位置存在不同的取代基,化合物14b和14c变得不对称,在它们的13C NMR谱图中表现出四个四级sp2杂化碳[14b 6 134.55 Ihe OsC-NHR' 13 12 0 NR' -CH2COMe 7 0 0 OANAS-OANANRH H 14 15 方案 3 a, R = CH,Ph, R' = H; 湾, R = CH,Ph, R' = 我;c, r = CH,Ph, r' = Et;d, R = 我, R' = H;e, R = R' = 我;f, R = (CH,),CN, R' = H;g, R = (CH,),CN, R' = 我;h, R = (CH,),-CO,Et, R' = H;i, R = (CH,),CO,Et, R' = Me J.CHEM. SOC. PERKIN TRANS.I 1992 表 1 化合物 5a-i 和 8 的物理和光谱数据 ~~~ ~ 反应 M.p. (“C) 收率温度 (I/”C) Compd. [溶剂] (%) 时间 [r/h] 6 He 5a 5b 5c 135 [EtOH] 150-152 CCHClJ 73 48 40-50 [3] 50-60 [lo] (TFA) 2.55 (3 H, s, COCH,), 5.0 (2 H, s,NCH,),7.10(5 H,s,ArH), 8.20(1小时,南,6小时)。(CDCI,) 2.20 (3 H, S, 6-CH3), 2.40 (3 H, s,COCH,),4.90(2 H,s,NCH,),6.80- 7.10(5 H,m,ArH), lO.lO(1 H, br,NH, 与 D,O 交换) 1.90(2 H,m,CH,CH,),2.40-2.80(5 H, m, COCH,, 6-CH,), 5.0 (2 H, s, NCH,), 6.90-7.35 (5 H, m, ArH), 10.50 (1 H, br,NH,与(CDCIJ 1.0(3 H,t,J 6,CH3),1.交换 33- 244 (1) 258 (97) 286 (53) 1675,1610 1705,1650 1700,1680, 1640 306.1 (5.76), 249.7 (4.1), 227.7 (4.3), 205.1 (6.3) 276.5 (1 1.4), 230.3 (1 1.2), 208.1 (13.1) 276.1 (12.1), 231.3 (11.9), 207.9 (14.2) SD 5e 210-212 [甲基苯] 170-172 [甲基苯] 38 (45)' 22 (26)' 50-60 [lo] 50-60 [6.5] (疾病预防控制中心, + TFA) 2.15 (3 H, s, COCH,), 5.05 (2 H, s, NCH,), 7.0- 7.25 (10 H, m, ArH) (CDCI,) 2.40(3 H, s,COCH,), 5.0 (2 H, s, NCH,), 7.10-7.40 (9 H, m, ArH), 10.0 (1 H, br, NH, 与 D,O 交换) 320 (98) 354 (70) 1685,1620 1690,1660, 1640 282.9 (9.6), 234.1 (15.2), 209.5 (17.3) 287.1 (1 3.6), 253.3 (10.4), 214.1 (21.3) 51 SG 5H 5i * 8 195-197 [甲基苯] 220-222 [甲基苯] 280 [甲基苯] 31 35 90 50-60 [4.5] 50-60 [4.5] W50 [3.5] D2O)(CDCI, + TFA) 2.35 (3 小时, s, COCH,), 5.10 (2 小时, s, NCH,), 7.10- 7.55 (9 小时, m, ArH) (CDCI, + TFA), 2.35 (3 小时, s, COCH,), 5.15 (2 小时, s, NCH,), 7.10- 7.50 (9 小时, m, ArH) (CDCI,) 1.30(3H,t, J7,CH3,2.25(3 H, S, COCHJ,4.20(2 H,q,J 7, OCHZ- CH,), 4.90 (2 H, S, NCH,), 6.85-7.20 (5 H, m, ArH), 10.45 (1 H, br, NH, 与 D,O) COCH 交换,),5.0(2 H,s,NCH,),7.0-7.55 (9 H, m, ArH), 8.50 (1 H, br, NH, 与 D,O) (CDCI, + TFA) 2.95 (3 H, s, CH,), 5.10 (2 H, s, NCH,), 6.45 (1 H, s, (CDCI, ['H,]-DMSO), 2.45 (3 H, S, 354 (100) 354 (100) 288 (75) 321 (100) 283 (100) 1690, 1630 1690,1630 1705,1600 1695,1660 1680 284.7 (ll.l), 230.0 (18.0), 216.1 (23.9) 285.1 (1 2.4), 236.9 (20.8), 21 1.3 (20.7) 267.7 (10.6), 210.7 (14.9) 267.7 (10.6), 222.7 (16.2), 210.7 (19.4) 269.3, 244.1,209.5 8-H), 7.0-7.30 (5 H, m, ArH) a 元素分析: 5a (发现: C, 64.7;H,4.75;N, 11.2.C,,H,,N,O, 需要 C, 64.93;H,4.91;N,11.47%);5b (发现: C, 64.8;H,5.35;N,10.6。Cl,H,4Nz03 需要 C, 65.11;H,5.42;N,10.85%);5c (发现: C, 66.85;H, 6.25;N,9.5。C,,H,,N,O,需要C,67.13;H,6.29;N,9.79%);5d (找到: C, 70.86;H,4.92;N,8.52。C,,H,,N,O,需要 C,71.25;H, 5.00, N, 8.75%);5e(发现C,64.3;H,4.25;N, 7.9.C,,H,,C1N2O3 需要 C, 64.31;H,4.21;N,7.89%);5f(发现C,64.75;H,4.25;N,7.4。C,,H,,CIN,O,需要 C,64.31;H,4.21;N,7.89%);5e (发现: C, 64.4;H,4.3;N,7.8。C,9H,,CIN,03 需要 C, 64.31;H,4.21;N. 7.89%);Si (Found: C, 67.25;H,5.0;N,13.35。C1,H,,N,O,需要C,67.28;H,4.67;N,13.08%);5h (发现: C, 62.3;H,5.45;N,9.5。C,,Hl,N20,需要C,62.50;H,5.55;N,9.72%);8 (发现: C, 63.8;H,4.4;N,14.5。C,,H,,N,O,需要 C, 63.60, H, 4.59;N,14.84%)。'结晶的溶剂。'硫代酰胺反应的产量。d分离出的另一种产物-3-苄基-6-甲基尿嘧啶3(14%),熔点193-195“C(CHC1,);男/Z 216 (100);G,(CDCI, + ['H,]-DMSO), 2.0 (3 H, s, CH,), 4.85 (2 H, s, NCH,), 5.35 (1 H, s, 5-H), 6.75-7.20 (5 H, m, ArH), 10.20 (1 H, br, NH, 与 D,O 交换);vrnax/cm-l 1740 (M)和 1630 (GO);k,,(MeOH)/nm 260.5 (9.9 x lo3) 为 209.7 (14.1 x lo3)。“5a: 6,(CDCI, + C2Hb]-DMS0)(APT) 29.98 (+ve, CH,), 42.35 (-ve, CH,), 107.22 (-ve, Arc), 126.20 (+ve, ArCH), 127.43 (+ve, ArCH), 127.82 (+ve, ArCH), 139.37 (-ve, C-5), 160.03 (-ve, C=O), 162.25 (+ve, 6-H), 163.92 (-ve, M),193.78 (-ve, C=O);5i GL~CDCI,+ DMSO) 31.15 (4,CH,), 42.96 (t, CH,), 112.76 (s, Arc), 122.31 (d, PyC,), 126.88 (d, ArCH), 127.65 (d, ArCH), 128.07 (d, ArCH), 135.31 (d, PyC,), 135.45 (s, C=C), 147.52 (d, PyC,), 150.22 (s, PyC,), 150.48 (d, PyC,), 152.12 (s, GO), 154.72 (s, C=C), 160.79 (s, Ca), 196.74 (s, C=O);5h: Gc(CDCI,): 14.19 (9, OCH,CH,), 18.11 (9, COCH,), 43.97 (t, NCH,), 61.54 (t, OCH,), 106.43 (s, Arc), 127.78 (d, ArCH), 128.39 (s, ArCH), 128.92 (d, ArCH), 136.17 (s, C-5), 152.10, 153.70 (s, C=O, C-6), 160.08 (s, M),164.31 (s, C=O);&,(INEPT):14.20 (+ve, CH,)、18.14 (+ve, COCH,)、43.97 (-ve, OCH,)、61.57 (-ve, NCH)、127.78 (+ve, ArCH)、128.39 (+ve, ArCH) 和 128.92 (+ve, ArCH)。(弧),145.32(C=O),147.35(C=O),176.32(CS);14c: 6 134.55 因此,与硫脲中取代基的作用相反 146.57 (C=O),(Arc), 145.12 (M), 175.32(C=S)]与1发生两次反应,1中的N-3取代基对紧密放置的羰基信号没有不良影响。化合物 1 (R = CH2Ph) 在这些反应中。与1,3-二甲基-2-硫脲一起得到多种产物最初,在尿素和硫脲与N-烷基-(TLC)的反应中,只有化合物12可以在1%的<中分离出化合物12,6-甲基-1,3-0嗪-2,4(3H)-二酮1,NH,产率的基团.1-苯基硫脲未能与1(R = CH2Ph)尿素/硫脲在C-2处攻击1,可能是由于空间限制。16 可以遵循三种途径 b、c、d 进行环化反应,以研究 1 的取代基在其反应中的作用(方案 3)。在尿素和1-甲基脲的反应中,16主要与t-hioureas,3-su bstituted-1,3-oxazine-2,4( 3H)-diones 1通过路径b环化得到17(R=CH2Ph),然后从丢失的异氰酸酯中获得[R=Me,(CH2),CN,(CH2),C02Et],形成3-苄基-6-甲基尿嘧啶3。将异-6-甲基-1,3-0噴嗪-2,4(3H)-二酮和适当的卤化物氰酸盐捕获在氨溶液中,并分离出它们各自的化合物1[R = Me,(CH,),CN,(CH,),CO,Et]和尿素。在硫脲和1-甲基硫脲反应中,16中6-硫代-环化路线b受阻,沿路径c得到1,3,5-三嗪-2,4(1H,3H,SH)-二酮14d-i,收率为42-57%。3-苄基-1,3,5-三嗪-2,4,6(1H,3H,SH)-三酮 13.In 1142 J. CHEM.SOC. PERKIN TRANS.i 1992 表2 化合物13和14a-i反应化合物的物理和光谱数据。 p. (“C) [溶剂] 产率 (%) 温度 (I/”C) 时间 [r/h] 6 H' 13 14a 14b 14C 14d 14e 14f 14g 14h 137-139 CCHCl3I 224-226 [MeOH] 191-192 [MeOH] 190-192 [MeOH] 252 [MeOH] 209-210 [MeOH] 209 [MeOH] 169 [MeOH] 89-90 [MeOH] 4 55 52 52 57 55 49 48 42 40-50 [IS] 40-50 C2.51 5-c51 50-60 [51 70-80 [5] 70-80 [6]70-80 [8] 70-80 [8] 70-80 [8] (CDCI,) 3.15 (6 H, s, 2 x NCH,), 4.80 (2 H, s, NCH,), 6.85-7.15 (5 H, m, ArH) s, NCH,), 7.10(5H, s, ArH), 12.50(2H, br, 2 x NH, 与 D,O) 交换, NCH,), 4.85 (2 H, s, NCH,), 7.0-7.35(5H,m,ArH),12.65(1H,br,NH, 与 D 交换,O) (CDCl, + TFA) 1.34 (3 H, t, CH,), 4.40 (2 H, q, CH,), 5.12 (2 H, s, NCH,), 7.37-7.41 (5 H, m, ArH) (CDCI, + TFA) 3.40 (3 H, s, NCH,) (CDCI, + C2H6]-DMSO) 4.95 (2 小时, (CDCI, + [2H,j]-DMSO) 3.50 (3 小时, (CDCI, + TFA) 3.35 (3 小时, s, NCH,), 3.70 (3 小时, s, NCH,) 2 x 通道,), 4.25 (2 H, t, J 7, NCH,) (CDCI, + TFA) 2.0-2.80 (4 H, m, (2 H, t, J7, NCH,) (CDCI, + TFA), 1.35 (3 H, t, J 7, OCH,CH,), 1.90-2.70 (4 H, m, (CDCl, + TFA), 2.10-2.70 (4 H, 2 x CH,), 3.80 (3 H, S, NCH,), 4.25 247 (100) 235 (79) 249 (92) 263 (95) 159 (34) 173 (100) 212 (25) 226 (86) 259 (56) 1700,1675 1740, 1655 1740, 1660 1760, 1900 1750, 1675 1740, 1685 2250, 1745, 2240, 1735, 1700 1680 1715, 1680 208.7 (10.3) 269.9 (27.3), 207 (12.6) 267.9 (25.8), 208.3 (12.5) 270.7 (20.4), 207.7 (9.7) 268.9 (21.4), 204.9 (5.7) 267.3 (17.1), 206.1 (5.2) 270.3 (20.3), 206.9 (6.95) 167.5 (22.2), 228.5 (3.4) 270.1 (12.6) 2 x CH,), 3.9W.50 (4 H, m, NCH, and OCH,) 14i 89-90 42 70-80 [7] (CDCl,) 1.30 (3 H, t, J 7, OCH,CH,), 273 (63) 1730, 1670 267.5 (20.8), 228.9 (3.0) CCHC13I 1.80-2.50 (4 H, m, 2 x CH,), 3.60 (3 H, s, NCH,), 3.80-4.30 (4 H, m, NCH, and OCH,), 10.0 (1 H, br, NH, 与 D,O 交换) ~~~~~ 元素分析: 13 (发现: C, 58.1;H, 5.3.C,,H,,N,O, 需要 C, 58.29;H,5.26%);14a(发现:C,51.2;高, 4.0 N, 17.45.C,,H,N,O,S 需要 C, 51.06;H,3.82;N,17.87%);14b (找到: C, 53.2;H,4.35;N, 16.4.C, 1HllN302S 需要 C, 53.01;H,4.41;N,16.86%);14d (找到: C, 30.1;H,3.05;N,26.1。C4H,N,02S需要C,30.18;H,3.14;N, 26.41%);14e (找到: C, 34.1;H,3.9。C5H,N,02S 需要 C, 34.68;H,4.04%);14f (找到: C, 39.4;H,3.45;北,26.15。C,H8N4O,S需要C,39.62;H,3.77;N, 26.41%);14g(发现:C,42.2;H,4.45。C8H1,,N.,O,S 需要 C, 42.47;H,4.42%);14i (发现: C, 43.6;H,5.3;N,15.1。C,,H,,N,O,S 需要 C, 43.95;H,5.49;N,15.38%);结晶溶剂。14a: Gc(CDC1, + DMF) 42.17 (t,NCH,) 125.71, 126.23, 126.57(d,ArCH), 134.69(s,ArCH), 146.23(s,-), 17~134(C=!3);Gc(INEPT)(CDC1,+ DMF)42.17(-ve,CH2) 125.71, 126.23,126.57(+ve, ArCH);14b:G,(CDCl, + DMF) 33.18 (q, CH,), 44.0 (t, CH,), 126.50, 127.09, 127.32 (d, ArCH), 134.63 (s, Arc), 145.32(s, C=O), 147.35 (s, C=O), 176.05 (s, CS);G,(INEPT)(CDCl, + DMF) 33.18 (+ve.CH,), 44.0 (-ve, CH,), 126.50, 127.09, 127.32 (+ve, ArCH);14c Gc(CDC1, + DMF) 9.86 (9, CH,), 41.0 (t, CH,), 43.35 (t, CH,), 125.85, 126.49, 126.62 (d, ArCH), 134.55 (s, ArC), 145.12 (s, C=O), 146.57 (s, GO), 175.32 (s, C=S), F,(INEPT)(CDCI, + DMF) 9.83 (+ve, CH,), 40.99 (-ve, CH,), 43.37 (-ve, CH,), 125.84, 126.40, 126.62 (+ve, ArCH);14g:G,(二氧六环+CDCI,)17.40(CH,),24.06(CH,),34.78(CH,),41.35(CH,),119.31(C=N),146.80(GO),148.32(C=O),176.31(GO),S,(INEPT)(二氧六环+CDCI,):14.70(-ve,CH,),24.06(-ve,CH,),34.78(-ve,CH,)和41.35(-ve,CH,).硫脲与1(R=烷基)反应,中间体16可直接通过路线c环化形成三嗪衍生物14。但是,在1与双质子脲的反应中不存在这种模式,这表明了另一种模式,即硫参与16(方案3;路径d),然后消除CH,COCH3基团*,得到噻二嗪1415,在添加碱(K2C03)的情况下,噻二嗪可以经历5 Dimroth重排'至14。S-Scheme 4 甲基硫脲未能与 1 反应的观察结果进一步支持了反应模式 d。实验在毛细管中测定了6-取代的5-乙酰基-3-苄基尿酸M.p.s的质谱图,并且未经校正。]- H 移和 (iii) CH,(路径 z)(方案 4)。用 6-硫代 DMSO 或 TFA 使用 TMS 作为内标。红外光谱1,3,5-三嗪-2,4(1H,3H,SH)-二酮14,在Pye-Unicam SP3-300光谱碎片化模式上记录了KBr颗粒的主要质量,(i)SH在分光光度计上的损失和紫外光谱在岛津-UV-240上生成M+-33离子,(ii)[RNCO]+离子的形成。在 JEOL JMS-D-300 和 +(路径 x) 上运行质谱图,以及 (iii) HNCS 的损失,在 CDRI 下以 70 eV 运行的 M -59 VG 微质量 7070F 机器(路径 y)(方案 4)给出峰值。然而,在化合物 14b、14e、14g 和勒克瑙和 RSIC,昌迪加尔。薄层色谱14i,未观察到CH,N=C=S的损失(路径z)。在硅胶G或硅胶60 HFZs4的预包被TLC板上进行。 使用硅胶(60-120)进行柱层析。* 在1(R=CH,Ph)与硫脲的反应中,流出气体通过2,4-二硝基苯肼水溶液,得到丙酮2,4-二硝基苯腙,熔点127“C 熔点128”C)。6-甲基-1,3-0噁嗪-2,4-(3H)-二酮1与J. CHEM. SOC. PERKIN TRANS.I 1992 Am ides and Thioamides: General Procedures.-3 -苄基-6-甲基-1,3-0噴嗪-2,4(3H)-二酮(2.2 g,0.01 mol),烷烃/芳烃酰胺硫代酰胺(0.012 mol),无水K2C03(3.3 g,0.024 mol)和四丁基硫酸氢铵(-20 mg)在DMF(20 cm3)中吸收,混合物在40-80“C下搅拌。反应完成后(3-10小时),用稀HCl中和反应混合物,滤去悬浮固体,用乙酸乙酯洗涤。将滤液和洗涤液在减压下蒸发。将残留物在硅胶上柱层析,以苯和乙酸乙苯为洗脱剂,得到5-乙酰尿嘧啶衍生物(表1)。6-甲基-1,3-恶嗪-2,4(3H)-二酮衍生物1 [R = (CH,)3CN, (CH,),CO,Et]的合成。 6-甲基-1,3-恶嗪-2,4(3H)-二酮(1.27g,0.01mol),在含有无水碳酸钾(4.1g,0.03mol)和三乙基苄基氯化铵(-20mg)的乙腈(50cm3)中在室温下搅拌1小时。然后加入4-氯丁腈/乙腈1 4-氯丁腈(0.012mol),搅拌反应混合物。反应完成后(TLC,18-25小时),过滤掉固体并用乙腈洗涤。将滤液和洗涤液合并,并蒸馏掉溶剂以留下残留物。使用苯和乙酸乙酯作为洗脱液,在硅胶上柱层析,得到化合物1[R = (CH2)3CN,(CH,)3CO,Et]。方法B.将4-氯丁腈/4-氯丁酸乙酯(0.012 mol)用碘化钠(0.013 mol)在丙酮(干燥)中回流1 h,然后加入6-甲基-1,3-恶嗪-2,4(3H)-二酮(0.01 mol)和无水碳酸钾(0.03 mol),回流反应混合物。反应完成后(TLC,8小时),将混合物如上所述。3-(3-氰丙基)-6-甲基-1,3-恶嗪-2,4(3H)-二酮 1 [R = (CH,),CN]: (A) 18 h (50 “C), (45%);(B) 8 h (55%), m-p.液;m/z 194 (M', 6);G,(CDC13) 1.80-2.65 (7 H, m, CH3 和 2 x CH,), 4.0 (2 H, t, J 7, NCH,) 和 5.85 (1 H, s, CH);1143 3.80-4.40 (4 H, m, NCH, and OCH,) 和 5.75 (1 H, s, H);v,,,(CHC13)/cm-' 1780 (M),1750 (C=O) 和 1720 (0);h,,,(MeOH)/nm 227.5.3-烷基-6-甲基-1,3-0氧嗪-2,4(3H)-二酮1与尿素和硫脲的反应。这些是用酰胺进行的,形成的产物的数据记录在表2中。致谢 我们感谢 UGC(印度)的财政援助、CDRI(勒克瑙)、RSIC(昌迪加尔)和 TIET(帕蒂亚拉)的质谱和元素分析。感谢教资会在COSIST和SAP计划下的财政援助。参考文献 1 (a) 第 3 部分。S. Kumar, S. S. Chimni and H.Singh, J. Chem. SOC., Perkin Trans. 1, 1991, 1391 及其参考文献;(b) S. Ahmed, R. Lofthouse 和 G. Shaw, J. Chem. SOC., Perkin Trans. 1, 1976, 1969;(c) T. Kato 和 N. Katagiri, Heterocycles, 1980, 14, 1333;(4 M.Sainsbury在综合杂环化学,杂环化合物的合成和用途中&编辑A.R.Katritzky和C.W.Rees,1984年,第3卷,995;(e) T. Kinoshita, K. Takeuchi, M. Kondoh and S. Furukawa, Chem. Pharm. Bull., 1989, 37, 2026;参见 H. Singh, P. Aggarwal 和 S. Kumar, Indian J. Chem., Sect. B, 1989, 28, 950;(g) H.Singh, P. Aggarwal 和 S. Kumar, J. Chem. Res., 1991, (S)362.2 J. P. Kokko, L. Mandell 和 J. H. Goldstein, J. Am. Chem. SOC., 1962,84,1042.3 J. K. M. Sanders 和 B. K. Hunter,《现代核磁共振波谱》,牛津大学出版社,牛津,1987 年,第 74 页。4 H. T. Clarke 和 L. D. Behr, Org. Syntheses, Coll. Vol. 2, 1943,562.5 P. Singh, K. Deep 和 H. Singh, J. Chem. Res., 1984, (S)71;(M)0636。6 杂环化合物的化学;嘧啶,第 1 部分,D. J. Brown 和 S. F. Mason 编辑,Interscience,1962,534。7 M. Goese, J.Am. Chem. SOC., 1941,63,2283.8 K. Hirota, K. A. Watanabe 和 J. J. Fox, J. Org. Chem., 1978, 43, 1193 及其参考文献。9 A. I. Vogel 的《实用有机化学教科书》,ELBS 和 v,,,(CHC13)/cm-' 2250 (C=N)、1750 (C=O) 和 1700 (0);朗文,1975,346。h,,,(甲醇)/纳米 227.9。3-(乙氧羰基丙基)-6-甲基G1,3-恶嗪-2,4(3H)-二酮 1 [R = (CH,),CO,Et]: (A) 25 h (50 “C) (35%);(B) 8 小时 (55%);MP 52“C(CHC13);米/兹 241 (M+,45);G,(CDC13) 1.25 (3 H, t, J 7, OCH,CH3), 1.80-2.50 (7 H, m, 2 x CH,, CH3), 论文 1/06487H 收稿日期 1999 年 12 月 30 日 1 接受日期 1992 年 2 月 10 日

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号