首页> 外文期刊>Molecular biology and evolution >Evolutionary implications of bacterial polyketide synthases
【24h】

Evolutionary implications of bacterial polyketide synthases

机译:细菌聚酮合酶的进化意义

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Polyketide synthases (PKS) perform a stepwise biosynthesis of diverse carbon skeletons from simple activated carboxylic acid units. The products of the complex pathways possess a wide range of pharmaceutical properties, including antibiotic, antitumor, antifungal, and immunosuppressive activities. We have performed a comprehensive phylogenetic analysis of multimodular and iterative PKS of bacteria and fungi and of the distinct types of fatty acid synthases (FAS) from different groups of organisms based on the highly conserved ketoacyl synthase (KS) domains. Apart from enzymes that meet the classification standards we have included enzymes involved in the biosynthesis of mycolic acids, polyunsaturated fatty acids (PUFA), and glycolipids in bacteria. This study has revealed that PKS and FAS have passed through a long joint evolution process, in which modular PKS have a central position. They appear to have derived from bacterial FAS and primary iterative PKS and, in addition, share a common ancestor with animal FAS and secondary iterative PKS. Furthermore, we have carried out a phylogenomic analysis of all modular PKS that are encoded by the complete eubacterial genomes currently available in the database. The phylogenetic distribution of acyltransferase and KS domain sequences revealed that multiple gene duplications, gene losses, as well as horizontal gene transfer (HGT) have contributed to the evolution of PKS I in bacteria. The impact of these factors seems to vary considerably between the bacterial groups. Whereas in actinobacteria and cyanobacteria the majority of PKS I genes may have evolved from a common ancestor, several lines of evidence indicate that HGT has strongly contributed to the evolution of PKS I in proteobacteria. Discovery of new evolutionary links between PKS and FAS and between the different PKS pathways in bacteria may help us in understanding the selective advantage that has led to the evolution of multiple secondary metabolite biosyntheses within individual bacteria.
机译:聚酮合酶 (PKS) 从简单的活性羧酸单元中逐步生物合成各种碳骨架。复杂途径的产物具有广泛的药物特性,包括抗生素、抗肿瘤、抗真菌和免疫抑制活性。我们基于高度保守的酮酰合酶 (KS) 结构域,对细菌和真菌的多模态和迭代 PKS 以及来自不同生物群的不同类型的脂肪酸合酶 (FAS) 进行了全面的系统发育分析。除了符合分类标准的酶外,我们还包括参与细菌中霉菌酸、多不饱和脂肪酸 (PUFA) 和糖脂生物合成的酶。本研究表明,PKS和FAS经历了一个漫长的联合演化过程,其中模块化PKS处于中心位置。它们似乎源自细菌 FAS 和初级迭代 PKS,此外,它们与动物 FAS 和次级迭代 PKS 具有共同的祖先。此外,我们还对数据库中目前可用的完整真细菌基因组编码的所有模块化PKS进行了系统发育分析。酰基转移酶和KS结构域序列的系统发育分布表明,多基因重复、基因丢失以及水平基因转移(HGT)对细菌中PKS I的进化做出了贡献。这些因素的影响似乎在细菌群之间有很大差异。虽然在放线菌和蓝细菌中,大多数PKS I基因可能是从共同的祖先进化而来的,但有几条证据表明HGT对变形菌中PKS I的进化做出了巨大贡献。发现PKS和FAS之间以及细菌中不同PKS途径之间的新进化联系可能有助于我们理解导致单个细菌内多种次级代谢物生物合成进化的选择优势。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号