...
【24h】

Molecular dissection of cardiac repolarization by in vivo Kv4.3 gene transfer.

机译:Molecular dissection of cardiac repolarization by in vivo Kv4.3 gene transfer.

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Heart failure leads to marked suppression of the Ca(2+)-independent transient outward current (I(to1)), but it is not clear whether I(to1) downregulation suffices to explain the concomitant action potential prolongation. To investigate the role of I(to1) in cardiac repolarization while circumventing culture-related action potential alterations, we injected adenovirus vectors in vivo to overexpress or to suppress I(to1) in guinea pigs and rats, respectively. Myocytes were isolated 72 hours after intramyocardial injection and stimulation of the ecdysone-inducible vectors with intraperitoneal injection of an ecdysone analog. Kv4.3-infected guinea pig myocytes exhibited robust transient outward currents. Increasing density of I(to1) progressively depressed the plateau potential in Kv4. 3-infected guinea pig myocytes and abbreviated action potential duration (APD). In vivo infection with a dominant-negative Kv4. 3-W362F construct suppressed peak I(to1) in rat ventriculocytes, elevated the plateau height, significantly prolonged the APD, and resulted in a prolongation by about 30 of the QT interval in surface electrocardiogram recordings. These results indicate that I(to1) plays a crucial role in setting the plateau potential and overall APD, supporting a causative role for suppression of this current in the electrophysiological alterations of heart failure. The electrocardiographic findings indicate that somatic gene transfer can be used to create gene-specific animal models of the long QT syndrome.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号