首页> 外文期刊>Monthly weather review >Assimilation of High-Resolution Satellite-Derived Atmospheric Motion Vectors: Impact on HWRF Forecasts of Tropical Cyclone Track and Intensity
【24h】

Assimilation of High-Resolution Satellite-Derived Atmospheric Motion Vectors: Impact on HWRF Forecasts of Tropical Cyclone Track and Intensity

机译:Assimilation of High-Resolution Satellite-Derived Atmospheric Motion Vectors: Impact on HWRF Forecasts of Tropical Cyclone Track and Intensity

获取原文
获取原文并翻译 | 示例
       

摘要

It is well known that global numerical model analyses and forecasts benefit from the routine assimilation of atmospheric motion vectors (AMVs) derived from meteorological satellites. Recent studies have also shown that the assimilation of enhanced (spatial and temporal) AMVs can benefit research-mode regional model forecasts of tropical cyclone track and intensity. In this study, the impact of direct assimilation of enhanced (higher resolution) AMV datasets in the NCEP operational Hurricane Weather Research and Forecasting Model (HWRF) system is investigated. Forecasts of Atlantic tropical cyclone track and intensity are examined for impact by inclusion of enhanced AMVs via direct data assimilation. Experiments are conducted for AMVs derived using two methodologies ("HERITAGE'' and "GOES-R''), and also for varying levels of quality control in order to assess and inform the optimization of the AMV assimilation process. Results are presented for three selected Atlantic tropical cyclone events and compared to Control forecasts without the enhanced AMVs as well as the corresponding operational HWRF forecasts. The findings indicate that the direct assimilation of high-resolution AMVs has an overall modest positive impact on HWRF forecasts, but the impact magnitudes are dependent on the 1) availability of rapid scan imagery used to produce the AMVs, 2) AMV derivation approach, 3) level of quality control employed in the assimilation, and 4) vortex initialization procedure (including the degree to which unbalanced states are allowed to enter the model analyses).

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号