首页> 外文期刊>Solid State Communications >Electronic properties of telescoping carbon nanotubes under external fields
【24h】

Electronic properties of telescoping carbon nanotubes under external fields

机译:Electronic properties of telescoping carbon nanotubes under external fields

获取原文
获取原文并翻译 | 示例
           

摘要

In this work, we use the tight-binding model to study the low-energy electronic properties of telescoping double-walled carbon nanotubes subject to the influences of a transverse electric field and a parallel magnetic field. The state energy and energy spacings are found to oscillate significantly with the overlapping length. External fields would modify the state energies, alter the energy gaps, and destroy the state degeneracy. Complete energy gap modulations can be accomplished either by varying the overlapping length, or by applying an electric field or a magnetic field. The variations of state energies with the external fields will be directly reflected in the density of states. The numbers, heights, and frequencies of the density of states peaks are strongly dependent on the external fields. (C) 2007 Elsevier Ltd. All rights reserved.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号