首页> 外文期刊>Chemistry of Materials: A Publication of the American Chemistry Society >Competing Mechanisms in Atomic Layer Deposition of Er2O3 versus La2O3 from Cyclopentadienyl Precursors
【24h】

Competing Mechanisms in Atomic Layer Deposition of Er2O3 versus La2O3 from Cyclopentadienyl Precursors

机译:环戊二烯基前驱体中Er2O3与La2O3原子层沉积的竞争机制

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Thin films of rare earth metal oxides are interesting materials for many technology applications, which requires a method for controlled growth of such films. If suitable precursors are available, atomic layer deposition (ALD) is the method of choice for nanoscale thin film deposition. Previous studies have identified promising cyclopentadienyl-containing (C5H5, Cp) precursors for rare earth oxide ALD, but little is known about the growth reactions. In this paper, we use first principles periodic density functional theory (DFT) computations to study key reactions in ALD growth of La2O3 and Er2O3. We start from the hydroxylated (001) surface of the hexagonal phase as a model for each oxide. To predict the most stable adsorbate once the metal precursor pulse is finished, we analyze the interaction of the precursor molecule with the oxide surface, the energetics of successive ligand eliminations and the resulting surface structures. For La2O3 we find (i) transfer of hydrogen from the surface to a Cp ligand has a barrier of 0.8 eV, (ii) non-ALD desorption of precursor fragments is favored, (iii) the final adsorption fragment is predicted to be La(Cp)2. In contrast, at the Er2O3 surface, (i) hydrogen transfers spontaneously from the surface to the adsorbing precursor, (ii) reactive adsorption is Ihermodynamically favored over desorption, and (iii) the final adsorbate is predicted to be Er(Cp). We predict that ligand elimination is significantly more favorable on surfaces of Er2O3 relative to La2O3, and so that Er2O3 ALD is a better process. We rationalize this as due to stronger ri-O bonding, but also due to the restoration of a less distorted surface. These studies provide new insights into the key reactions occurring during ALD of rare earth oxides and new understanding of experimental findings.
机译:稀土金属氧化物薄膜是许多技术应用的有趣材料,这需要一种控制此类薄膜生长的方法。如果有合适的前驱体,原子层沉积(ALD)是纳米级薄膜沉积的首选方法。先前的研究已经确定了有前途的含环戊二烯基(C5H5,Cp)的稀土氧化物ALD前体,但对其生长反应知之甚少。本文采用第一性原理周期密度泛函理论(DFT)计算方法研究了La2O3和Er2O3在ALD生长过程中的关键反应。我们从六方相的羟基化 (001) 表面开始,作为每种氧化物的模型。为了预测金属前驱体脉冲完成后最稳定的吸附物,我们分析了前驱体分子与氧化物表面的相互作用、连续配体消除的能量学以及由此产生的表面结构。对于La2O3,我们发现(i)氢从表面转移到Cp配体的势垒为0.8 eV,(ii)有利于前体片段的非ALD解吸,(iii)最终吸附片段预计为La(Cp)2。相反,在Er2O3表面,(i)氢自发地从表面转移到吸附前体,(ii)反应性吸附在力学上优于解吸,(iii)最终吸附物预计为Er(Cp)。我们预测,与La2O3相比,Er2O3表面的配体消除明显更有利,因此Er2O3 ALD是一个更好的过程。我们将其合理化为由于更强的 ri-O 键合,但也由于恢复了变形较少的表面。这些研究为稀土氧化物ALD过程中发生的关键反应提供了新的见解,并对实验结果有了新的认识。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号