首页> 外文期刊>Aerosol Science and Technology: The Journal of the American Association for Aerosol Research >Development of a Technology for Online Measurement of Total and Water-Soluble Copper (Cu) in PM2.5
【24h】

Development of a Technology for Online Measurement of Total and Water-Soluble Copper (Cu) in PM2.5

机译:Development of a Technology for Online Measurement of Total and Water-Soluble Copper (Cu) in PM2.5

获取原文
获取原文并翻译 | 示例
       

摘要

A novel monitor for online, in situ measurement of copper (Cu) in ambient fine and ultrafine particulate matter (PM) was developed based on a recent published high flow rate aerosol-into-liquid collector. This aerosol-into-liquid collector operates at 200 L/min flow and collects particles directly as highly concentrated slurry samples. The Cu concentration in slurry samples is subsequently determined by a cupric ion selective electrode (ISE). Laboratory tests were conducted to evaluate the performance of the cupric ISE. The calibration curve of the cupric ISE was determined using Cu(NO3)(2) standard solutions prepared by serial dilution. As part of the evaluation, the effects of ionic strength, temperature and pH of the aerosol slurry sample on the cupric ISE measurement were also evaluated. The Cu measurement system performance was evaluated by collecting and measuring samples of lab-generated Cu(NO3)(2) aerosols with known mass concentration. Overall, very good agreement between the theoretical and measured Cu concentrations was obtained, corroborating the excellent high overall collection efficiency and measurement accuracy of the Cu measurement system. Field evaluations of the online Cu monitor demonstrated very good agreement for total and water-soluble Cu concentrations with measurements performed by inductively coupled plasma mass spectrometry (ICP-MS), suggesting that interferences from other components of particulate matter are minimal under real world sampling conditions. Moreover, the field tests indicated that the new online Cu monitor could achieve near-continuous collection and measurements (at 2-4 h intervals) for at least 4 to 7 days without any obvious shortcomings in its operation. Both laboratory and field evaluations of the online Cu monitor indicate that it is an effective and valuable technology for PM collection and characterization of Cu in ambient aerosols and provides the foundation for the wider use of ISE for metal analysis and speciation of aerosols.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号