...
首页> 外文期刊>The Journal of Clinical Investigation: The Official Journal of the American Society for Clinical Investigation >Transepithelial water permeability in microperfused distal airways. Evidence for channel-mediated water transport.
【24h】

Transepithelial water permeability in microperfused distal airways. Evidence for channel-mediated water transport.

机译:Transepithelial water permeability in microperfused distal airways. Evidence for channel-mediated water transport.

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Water movement across the airway epithelium is important for regulation of the volume and composition of airspace fluid. A novel approach is reported here to measure osmotic and diffusional water permeability in intact airways. Small airways (100-200 microns diameter, 1-2 mm length) from guinea pig lung were microdissected and perfused in vitro using concentric glass holding and perfusion pipettes. For measurement of osmotic water permeability (Pf), the airway lumen was perfused wit PBS (300 mOsM) containing a membrane impermeable fluorophore, fluorescein sulfonate (FS), and the airway was bathed in solutions of specified osmolalities. Pf determination was based on the changes in FS fluorescence at the distal end of the airway resulting from transepithelial water transport. Pf was 4-5 x 10(-3) cm/s at 23 degrees C and independent of lumen flow rate (10-100 nl/min) and the magnitude and direction of the osmotic gradient (bath osmolality 50-600 mOsM). Temperature dependence measurements gave an activation energy of 4.4 kcal/mol (15-37 degrees C). Pf was not altered by 0.3 mM HgCl2 or 50 microM forskolin, but was increased to 31 x 10(-3) cm/s by 100 micrograms/ml amphotericin B, indicating that osmosis is not limited by unstirred layers. Diffusional water permeability (Pd) was measured by H2O/D2O (deuterium oxide) exchange using the H2O/D2O-sensitive fluorescent probe aminonapthelane trisulfonic acid in the lumen. Measured Pd was 3-6 x 10(-6) cm/s at 23 degrees C, indicating significant restriction to water diffusion by unstirred layers. Antibody localization of water channels showed strong expression of the mercurial-insensitive water channel (AQP-4) at the basolateral membrane of airway epithelial cells. These results provide functional evidence that water movement across the distal airway epithelium is mediated by water channels.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号