首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >New cyclophane hosts: polyether-bridged hexaoxacyclophanes
【24h】

New cyclophane hosts: polyether-bridged hexaoxacyclophanes

机译:新的环烷主体:聚醚桥接的六氧杂环烷

获取原文
获取外文期刊封面目录资料

摘要

J. CHEM. SOC. PERKIN TRANS. I 1989 New Cyclophane Hosts: Polyether-Bridged Hexaoxacyclophanes Gary R. Bower, Alexandra M. Z. Slawin, and David J. Williams Department of Chemistry, Imperial College, London SW7 2AY George R. Brown Chemistry Department, lCl Pharmaceuticals, Mereside, Alderle y Park, Macclesfield, Cheshire SK I0 4TG Surinder S. Chana and J. Fraser Stoddart Department of Chemistry, The University, Sheffield S3 7HF The polyether- bridged hexaoxacyclophane (3)has been shown by X-ray crystallography to include a CH,CI, molecule within its molecular cavity. The conformational properties of the free hexaoxacyclophane (1) displayed' in the solid state encouraged us to progress to the incorporation of pol yether ribbons between the two rn-xylylene rings in (1) in order to increase the rigidity of the cyclophane unit and introduce a potential alkali-metal cation binding site.In this communication, we (i) report on the synthesis of the pol yether-bridged hexaoxacyclophanes (2) and (3), and (ii) illustrate by X-ray crystallography how (3) includes a CH2Cl, molecule within its molecular cavity in the solid state. As a result of separate reactions Cs,CO,/MeCN/reflux/ 24-28 h of bis(4-hydroxyphenyl) ether2 with 1,8-bis2,6-bis(bromomethy1)phenoxy I-3,6-dioxaoctane, and 1,l l-bis(2,6-bis(bromomethy1)phenoxy)-3,6,9-trio~aundecane~respectively (2) 3, m.p. 239-242 "C, M,754 (f.a.b.m.s.); G(CD,Cl,) 3.28-3.30 (8 H, s and m), 3.78-383 (4 H, m), 5.05 (8 H, s), 6.78-7.01 (16 H, A,B,), 7.22 (2 H, t, J7.5 Hz), 7.50 (4 H, d, J7.5 Hz) was isolated after preparative t.1.c.SiO,/CHCl,-EtOAc (20 :1, v/v) and (3) 7, m.p. 257-260°C, M, 798 (f.a.b.m.s.), G(CD,Cl,) 3.50-3.57 (8 H, m), 3.63-3.66 (4 H, m), 3.82-3.87 (4 H, m), 5.14 (8 H, s), 6.74-7.03 (16 H, A,B,), 7.21 (2 H, t, J7.5 Hz), and 7.52 (4 H, d, J 7.5 Hz) was isolated after column chromatography SiO,/CH,CI,-Et20 (20: 1, v/v). Single crystals of (3) suitable for X-ray crystallography were grown from CH,Cl,-hexane. New Cyclophane Hosts: A Hexaoxacyclophane Figure 1. Diagrammatic representation of a potential bireceptor molecule for alkali metal phenoxides To face p. 212 Figure 2. Space-filling representation of the solid state structure of (1): the oxygen atoms are shown in red Figure 3.The solid-state structure of (1) giving the atomic numbering scheme and selected torsional angles: the carbon and oxygen atoms are shown in grey and red, respectively. Note that there is a non-linearity of 9" between the 0(7)-C(8) and C(11)-O(12) bonds emanating from ring E (and from ring B) Figure 4. The packing of adjacent molecules (red and black) of (1) in the crystal. Aromatic ring centroid-centroid distances (A), angles (") between their mean planes: AA', 4.77,20; BB', 3.83,6; FF', 4.70,'19 Figure 5. The solid-state structure of (l)-C,H, giving the aromatic numbering scheme and selected torsional angles: the carbon and oxygen atoms are shown in grey and red, respectively Figure 6. Space-filling representation of the solid-state structure of (l)*C,H, corresponding to the view of the framework representation illustrated in Figure 5: the oxygen atoms are shown in red and the encapsulated benzene molecule is highlighted in grey Figure 7.The packing of adjacent supermolecules (red and black) of (l).C6H, in the crystal New Cyclophane Hosts: Polyether- Bridged Hexaoxacyclophanes Figure 1. The solid-state structure of (3).CH,CI, giving the atomic numbering scheme and selected torsima1 angles: the carbon, oxygen, and chlorine atoms are shown in grey, red and green, respectively. The angles between the O(I)-C(Z) and C(5)-0(4) and 0(25)-C(25)and C(22)-O(21) bonds are 8 and 2",respectively Figure 2. Space-filling representation of the solid state structure of (3)*CH2C1,corresponding to the view of the framework representation illustrate( in Figure 1: the oxygen and chlorine atoms are shown in red and green, respectively Figure 3.Space-filling representation of the solid state structure of (3)-CH2C1, looking into the molecular cave of (1): the oxygen and chlorine atom! are shown in red and green, respectively To face p. 2 131 3. CHEM. SOC. PERKIN TRANS. I 1989 The X-ray crystal structure* of (3) reveals (Figures 1 and 2) that the conformation of its hexaoxacyclophane unit changes from that adopted' in (1). The aromatic rings A and D are no longer parallel but they are folded in towards each other and so partially fill the macrocyclic ring aperture that was present' in (1).However, the bridging polyether ribbon, together with the aromatic rings F, A, and B form (Figure 3) the boundary to a sizable molecular cave in which a CH,CI, molecule4 resides.? The closest contacts to this encapsulated substrate are between one of the CH, protons on C(49) of CH,CI, and the two oxygen atoms, O(44) and 0(40), of the bridging polyether ribbon in (3), namely 2.51 and 2.55 A, respectively.$ In common with (l),aromatic rings A and B, and D and E, of the two diphenyl ether units are approximately orthogonal to each other. Again, in both cases, these geometries are produced by two non-zero torsional components about the 0(4)-C(5), 0(4)-C(8), and 0(25)-C(25), 0(25)-C(28) bonds, respectively (Figure 1). Approximate coplanarity5 of the methyleneoxy units with the aromatic rings A, B and D is retained; however, the C(21)-O(21) bond is rotated by 58" out-of-the-plane of aromatic ring E.The conformation of the polyether ribbon linking C(40) with C(20) has the torsional angle sequence g-g+g-a for the four contiguous 0-C-C-0 units. The solubility properties of (2) and (3) are very different: whilst (2) is virtually insoluble in most organic solvents, (3) is readily soluble in, for example, CHCl, and CH,CI,. As in the case of (l),' when 1 molar equivalent of potassium p-nitrophenolate was added to a CD,CI, solution (ca. 6 mM) of (3), insignificantly small displacements (ca. 0.03 p.p.m.) in the * Crystal data for compound (3). C,,H,,O,,~CH,Cl,, M = 883.8, triclinic, a = 9.524(3), b = 14.953(5), c = 17.278(7) A, a = 112.40(3),0 = 89.83(3), y = 98.53(3)", U = 2 246 A3, space group PT, Z = 2, D,= 1.31 g cm-,, ~(CU-K,) = 18 cm-'.The structure was solved by direct methods and refined anisotropically to give R = 0.066, R, = 0.066 for 3 985 independent observed reflections IFo 3 3u(IF,I), 8 < 55'1. Data were measured on a Nicolet R3m diffractometer with Cu-K, radiation (graphite monochromator) using o-scans. Atomic co- ordinates, bond lengths and angles, and thermal parameters have been deposited, at the Cambridge Crystallographic Data Centre. See 'Instructions for Authors (1989),' J. Chem. Soc., Perkin Trans. 1, 1989, Issue 1. t When a tetrahydrofuran (THF) solution of (3) was allowed to evaporate, single crystals containing THF and suitable for X-ray crystallography were isolated.The results of this investigation will be reported at a later date. $ Note, however, that there are no significant intermolecular short contacts between symmetry related (3).CH,Cl, molecular complexes. §Interestingly, when attempts were made to record the negative-ion f.a.b.m.s. of (3):potassium p-nitrophenolate in m-nitrobenzyl alcohol (mNBA) as the matrix, a peak was observed at m/z 951 for M + mNBA -. This observation suggests that (3) is complexing with mNBA under the conditions of the f.a.b. experiment, i.e. mNBA is present in large excess. chemical shifts of the protons on the anion relative to those for the same protons in the free potassium p-nitrophenolate in CD,CI, were observed.$ Dynamic H n.m.r.spectroscopy (CD,CI,) indicates that (3) undergoes a conformational inversion process as a result of passage of the polyether ribbon through the middle of the cyclophane (cJ: ref. 6). The singlet for the benzylic methylene protons in (3) at room temperature separates out into an AB system below -83 "C. The barrier to conformational inversion was increased by only 2.7 kJ mob1 from 36.7 to 39.4 kJ mol-' on addition of 1 molar equivalent of potassium p-nitrophenolate to (3).And so we conclude that any complexation is very small and that it is going to be necessary to add a second polyether ribbon (i.e. form a macrocyclic polyether) across the floor of the cyclophane. Acknowledgements We thank A.F.R.C.(A. M. Z.) and S.E.R.C. and I.C.I. Pharmaceuticals (S. S. C.) for their support of this research and the Leverhulme Trust for the award of a Research Fellowship to J. F. S. References 1 G. R. Brown, S. S. Chana, A. M. Z. Slawin, J. F. Stoddart, and D. J. Williams, J. Chem. SOC.,Perkin Trans. I, preceding communication. 2 G. Koga, M. Yasaka, and Y. Nakano, Org. Prep. Proced., 1969, 1(3), 205. 3 D. R. Alston, A. M. Z. Slawin, J. F. Stoddart, D. J. Williams, and R. Zarzycki, Angew. Chem., Int. Ed. Engl., 1987, 26, 692. 4 For other examples of CH,Cl, (and CHCl,) molecules included within the cavities of synthetic neutral host molecules, see F. Vogtle, H. Puff, E. Friedrichs, and W. M. Muller, J. Chem. SOC.,Chem.Commun., 1983, 1398; F. Vogtle and W. M. Muller, J. Incl. Phenom., 1984, 1, 369; I. Tabushi, K. Yamamura, H. Nonoguchi, K. Hirotsu, and T. Higuchi, J. Am. Chem. SOC.,1984, 106, 2621; J. Canceill, M. Cesario, A. Collet, J. Guilhem, and C. Pascard, J. Chern. Soc., Chem. Commun., 1985,361; J. Canceill, M. Cesario, A. Collet, J. Guilhem, and C. Pascard, ibid., p. 361; J. Canceill, M. Cesario, A. Collet, J. Guilhem, C. Riche, and C. Pascard, ibid., 1986,339; J. Canceill, L. Lacombe, and A. Collet, J. Am. Chem. Soc., 1986, 104,4230; A. W. Coleman, S. G. Bott, and J. L. Atwood, J. Incl. Phenom., 1986,4,247; I. Goldberg and K. M. Doxsee, ibid., p. 303; J. Jazwinski, J.-M. Lehn, R. Mkric, J.-P. Vigneron, M. Cesario, J. Guilhem, and C. Pascard, Tetrahedron Lett., 1987,28,3489.5 cf. A. Makriyannis and S. Fesik, J. Am. Chem. Soc., 1982, 104, 6462; L. I. Kruse and J. K. Cha, J. Chen?.Soc., Chem. Conzmun., 1982, 1329; J. D. Mersh, J. K. M. Sanders, and S. A. Maitlin, ibid., 1983, 306. 6 D. R. Alston, A. M. Z. Slawin, J. F. Stoddart, and D. J. Williams, Angew. Chem., Int. Ed. Engl., 1984, 23, 821; H. M. Colquhoun, J. F. Stoddart, and D. J. Williams, ibid., 1986, 25,487. Received 19th September 1988;Paper 8/03552K 0Copyright 1989 by The Royal Society of Chemistry
机译:J. CHEM. SOC. PERKIN 译.I 1989 New Cyclophane Hosts: Polyether-Bridged Hexaoxacyclophanes Gary R. Bower, Alexandra M. Z. Slawin, and David J. Williams 伦敦帝国理工学院化学系 SW7 2AY George R. Brown 化学系,lCl Pharmaceuticals, Mereside, Alderle y Park, Macclesfield, Cheshire SK I0 4TG Surinder S. Chana and J. Fraser Stoddart 谢菲尔德大学化学系 S3 7HF 聚醚桥六氧杂环烷 (3) 已被 X 射线晶体学证明包括CH,CI,分子在其分子腔内。在固态下显示的游离六氧杂环烷(1)的构象性质促使我们继续在(1)中的两个rn-二甲苯环之间掺入pol yether带,以增加环烷单元的刚性并引入潜在的碱金属阳离子结合位点。在本通讯中,我们 (i) 报告了 pol yether 桥接的六氧杂环烷 (2) 和 (3) 的合成,以及 (ii) 通过 X 射线晶体学说明 (3) 如何包括固态分子腔内的 CH2Cl 分子。双(4-羟基苯基)醚2与1,8-双[2,6-双(溴甲基1)苯氧基I-3,6-二氧杂辛烷和1,l l-双(2,6-双(溴甲基1)苯氧基)-3,6,9-十三~十一烷~分别[Cs,CO,/MeCN/reflux/ 24-28 h]反应的结果(2)[3%,M.p. 239-242“C,M,754(f.a.b.m.s.);G(CD,Cl,) 3.28-3.30 (8 H, s and m), 3.78-383 (4 H, m), 5.05 (8 H, s), 6.78-7.01 (16 H, A,B,), 7.22 (2 H, t, J7.5 Hz), 7.50 (4 H, d, J7.5 Hz) 在制备t.1.c后分离。柱层析[SiO,/CHCl,-EtOAc (20 :1, v/v)]和(3) [7%, m.p. 257-260°C, m, m, 798 (f.a.b.m.s.), G(CD,Cl,) 3.50-3.57 (8 H, m), 3.63-3.66 (4 H, m), 3.82-3.87 (4 H, m), 5.14 (8 H, s), 6.74-7.03 (16 H, A,B,)、7.21 (2 H, t, J7.5 Hz) 和 7.52 (4 H, d, J 7.5 Hz) [SiO,/CH,CI,-Et20 (20: 1, v/v)]。(3)的单晶适用于X射线晶体学,由CH,Cl,-己烷生长而成。新的环烷宿主:六氧杂环烷 图 1.碱金属苯酚的潜在双受体分子的示意图 [面对第 212 页,图 2。(1)固态结构的空间填充表示:氧原子以红色表示 图3.(1)的固态结构给出了原子序编号方案和选定的扭转角:碳原子和氧原子分别以灰色和红色显示。请注意,从环 E(和环 B)发出的 0(7)-C(8) 和 C(11)-O(12) 键之间存在 9“ 的非线性,图 4。晶体中(1)的相邻分子(红色和黑色)的堆积。芳环质心-质心距离 (A),其平均平面之间的角度 (“):AA',4.77,20;BB',3.83,6;FF', 4.70,'19 图 5.(l)-C,H的固态结构,给出了芳烃编号方案和选定的扭转角:碳原子和氧原子分别以灰色和红色显示,如图6所示。(l)*C,H的固态结构的空间填充表示,对应于图5所示的框架表示视图:氧原子以红色显示,封装的苯分子以灰色突出显示 图7.(l)的相邻超分子(红色和黑色)的堆积。C6H,在晶体中 新的环烷主体:聚醚桥六氧杂环烷 图 1.(3)的固态结构。CH,CI,给出原子序编号方案和选定的 torsima1 角度:碳、氧和氯原子分别以灰色、红色和绿色显示。O(I)-C(Z)和C(5)-0(4)和0(25)-C(25)和C(22)-O(21)键之间的角度分别为8和2“,如图2所示。(3)*CH2C1的固态结构的空间填充表示,对应于框架表示的视图所示( 图1:氧原子和氯原子分别以红色和绿色表示 图3.(3)-CH2C1固态结构的空间填充表示,观察(1)的分子洞穴:氧和氯原子! 以红色和绿色显示, 分别面对第 2 页 131 3.CHEM. SOC. PERKIN TRANS.I 1989 (3) 的 X 射线晶体结构* 显示(图 1 和图 2)其六氧杂环烷单元的构象与 (1) 中采用的构象发生了变化。芳香环 A 和 D 不再平行,但它们相互折叠,因此部分填充了 (1) 中存在的大环环孔径。然而,桥接聚醚带与芳香环F、A和B一起形成(图3)一个相当大的分子洞穴的边界,其中CH,CI,分子4驻留。与该封装基底最接近的是CH,CI的CH质子之一[在C(49)上]与(3)中桥接聚醚带的两个氧原子O(44)和0(40)之间,分别为2.51和2.55 A。 的两个二苯醚单元彼此近似正交。同样,在这两种情况下,这些几何形状分别由两个关于0(4)-C(5)、0(4)-C(8)和0(25)-C(25)、0(25)-C(28)键的非零扭转分量产生(图1)。保留了具有芳香环 A、B 和 D 的亚甲基氧基单元的近似共面性5;然而,C(21)-O(21)键在芳香环E的平面外旋转58“.连接C(40)和C(20)的聚醚带带的构象对于四个连续的0-C-C-0单元具有扭转角序列g-g+g-a。(2)和(3)的溶解度性质非常不同:(2)几乎不溶于大多数有机溶剂,(3)易溶于CHCl和CH,CI。与(l)的情况一样,'当将1摩尔当量的对硝基酚酸钾加入到(3)的CD,CI溶液(约6mM)中时,化合物(3)的*晶体数据中的位移很小(约0.03 p.p.m.)。C,,H,,O,,~CH,Cl,, M = 883.8,三斜晶系,a = 9.524(3),b = 14.953(5),c = 17.278(7) A,a = 112.40(3),0 = 89.83(3),y = 98.53(3)“,U = 2 246 A3,空间群 PT,Z = 2,D,= 1.31 g cm-,, ~(CU-K,) = 18 cm-'。通过直接方法求解该结构并各向异性细化,对于 3 985 次独立观测反射 [IFo] 3 3u(IF,I), 8 < 55'1,R = 0.066,R, = 0.066。使用O扫描在带有Cu-K辐射(石墨单色仪)的Nicolet R3m衍射仪上测量数据。原子坐标、键长和角度以及热参数已存放在剑桥晶体学数据中心。参见“作者须知(1989年)”,J. Chem. Soc., Perkin Trans. 1, 1989, issue 1。t 当(3)的四氢呋喃(THF)溶液蒸发时,分离出含有THF且适用于X射线晶体学的单晶。调查结果将在晚些时候报告。$ 然而,请注意,与对称性相关的分子间短接触没有显著的 (3)。CH,Cl,分子配合物。§有趣的是,当试图将间硝基苯甲醇(mNBA)中(3):p otassium p-硝基酚酸酯的负离子f.a.b.m.s.记录为基质时,在m/z 951处观察到[M + mNBA] -的峰值。这一观察结果表明,在f.a.b.实验的条件下,(3)与mNBA络合,即mNBA大量过量存在。观察到阴离子上的质子相对于CD,CI中游离钾对硝基酚酸钾中相同质子的化学位移。 动态H n.m.r.光谱(CD,CI,)表明(3)由于聚醚带穿过环烷的中间而经历了构象反转过程(cJ:参考文献6)。(3)中苄基亚甲基质子的单线态在室温下分离成低于-83“C的AB系统。在(3)中加入1摩尔当量的对硝基酚酸钾后,构象反转的屏障仅增加了2.7 kJ mob1,从36.7 kJ增加到39.4 kJ mol-'。因此,我们得出结论,任何络合都非常小,并且有必要在环烷的地板上添加第二个聚醚带(即形成大环聚醚)。致谢 我们感谢 A.F.R.C.(A. M. Z.) 和 S.E.R.C. 和 I.C.I. Pharmaceuticals (S. S. C.) 对这项研究的支持,以及 Leverhulme Trust 授予 J. F. S. 研究奖学金。 参考文献 1 G. R. Brown、SS Chana、A. M. Z. Slawin、J. F. Stoddart 和 D. J. Williams, J. Chem. SOC.,珀金译.一、先沟通。2 G. Koga, M. Yasaka, and Y. Nakano, Org. Prep. Proced., 1969, 1(3), 205.3 D. R. Alston、A. M. Z. Slawin、J. F. Stoddart、D. J. Williams 和 R. Zarzycki, Angew。Chem., Int. Ed. Engl., 1987, 26, 692.4 关于合成中性宿主分子腔内包括的CH、Cl(和CHCl)分子的其他例子,参见F. Vogtle, H. Puff, E. Friedrichs, and W. M. Muller, J. Chem. SOC.,Chem.Commun., 1983, 1398;F. Vogtle 和 W. M. Muller, J. Incl. Phenom., 1984, 1, 369;I. Tabushi, K. Yamamura, H. Nonoguchi, K. Hirotsu, and T. Higuchi, J. Am. Chem. SOC.,1984, 106, 2621;J. Canceill、M. Cesario、A. Collet、J. Guilhem 和 C. Pascard、J. Chern。Soc., Chem. Commun., 1985,361;J. Canceill, M. Cesario, A. Collet, J. Guilhem, and C. Pascard, 同上, 第361页;J. Canceill, M. Cesario, A. Collet, J. Guilhem, C. Riche, and C. Pascard, 同上, 1986,339;J. Canceill, L. Lacombe, and A. Collet, J. Am. Chem. Soc., 1986, 104,4230;A. W. Coleman, S. G. Bott, and J. L. Atwood, J. Incl. Phenom., 1986,4,247;I. Goldberg和K. M. Doxsee,同上,第303页;J.贾兹温斯基,J.-M.莱恩,R.姆里克,JPVigneron, M. Cesario, J. Guilhem, and C. Pascard, Tetrahedron Lett., 1987,28,3489.5 cf. A. Makriyannis and S. Fesik, J. Am. Chem. Soc., 1982, 104, 6462;L. I. Kruse 和 J. K. Cha, J. Chen?.Soc., Chem. Conzmun., 1982, 1329;J. D. Mersh, J. K. M. Sanders, and S. A. Maitlin, 同上, 1983, 306.6 D. R. Alston、A. M. Z. Slawin、J. F. Stoddart 和 D. J. Williams, Angew。Chem., Int. Ed. Engl., 1984, 23, 821;H. M. Colquhoun, J. F. Stoddart, and D. J. Williams, 同上, 1986, 25,487。收稿日期:1988年9月19日;论文 8/03552K 0版权所有 1989 英国皇家化学学会

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号