首页> 外文期刊>Proceedings of the Institution of Mechanical Engineers, Part C. Journal of mechanical engineering science >Rolling element bearing weak feature extraction based on improved optimal frequency band determination
【24h】

Rolling element bearing weak feature extraction based on improved optimal frequency band determination

机译:Rolling element bearing weak feature extraction based on improved optimal frequency band determination

获取原文
获取原文并翻译 | 示例
           

摘要

Conventional Kurtosis method represents the statistical property of signal in the time domain. Correlated Kurtosis is proposed that combines the correlation coefficient and Kurtosis in order to indicate the periodicity and impact of signal. In this study, correlated Kurtosis is introduced into frequency domain to improve the recognition accuracy of the optimal frequency band. It does not perform well under the lower signal-to-noise ratio. And then, maximum correlation Kurtosis de-convolution method is used for extracting the approximate impact signal before selecting the optimal frequency band. However, it is limited in diagnosing rolling element bearing fault in the case of the algorithm iteration period is unknown. In addition, filter length also affects the filtering results. To eliminate the confusion, correlated Kurtosis of the frequency domain is applied to iteration period calculation. In this research, a new index is also proposed based on entropy and correlated Kurtosis to optimize the filter length. Then, the full bandwidth of filtered signal is partitioned into several sub-bands according to the refined wavelet packet binary tree. The correlated Kurtosis for each sub-band is calculated. The optimal sub-band for which the correlated Kurtosis is maximal is extracted to analysis. In the end, the efficiency of the new index and the fault diagnosis method are verified by using simulation data and experimental data.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号