首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >X-Ray structure analysis of the tosylate ester of (1S,5S)-6,6-dimethyl-2-(2S)-3,3,3-trichloro-2-hydroxypropylbicyclo3.1.1hept-2-ene, the major product of the iron(III) chloride-catalysed ene addition of chloral to (—)-(1S,5S)-pin-2(10)-ene
【24h】

X-Ray structure analysis of the tosylate ester of (1S,5S)-6,6-dimethyl-2-(2S)-3,3,3-trichloro-2-hydroxypropylbicyclo3.1.1hept-2-ene, the major product of the iron(III) chloride-catalysed ene addition of chloral to (—)-(1S,5S)-pin-2(10)-ene

机译:氯化铁催化氯醛加成(—)-(1S,5S)-2-(2S)-3,3,3-三氯-2-羟丙基双环3.1.1庚-2-烯的甲苯磺酸酯的X射线结构分析

获取原文
获取外文期刊封面目录资料

摘要

1978 93 X-Ray Structure Analysis of the Tosylate Ester of (1 S,5S)-6,6-Dimethyl- 2- (2S)-3,3,3-trichloro-2-hydroxypropyl bicyclo3.1.Ihept-2-ene, the Major Product of the Iron(iii) Chloride-catalysed Ene Addition of Chloral to (-)-(lS,5S)-Pin-2(lO)-ene By Michael J. Begley, G.Bryon Gill," and Brian Wallace, Department of Chemistry, The University, Notting- ham NG7 2RD The crystal structure of the title compound (2) was determined by X-ray diffraction from diffractometer data by direct methods. Crystals are orthorhombic, space group P212121, with Z = 4 in a unit cell of dimensions: a = 13.076(4), b = 9.858(3), c = 16.234(4) A; the structure was refined by full-matrix least-squares to R 0.0447, without recourse to weighting analysis, for 1 547 independent reflections.The correlation of the conformation of the pinene skeleton in (2) with the published crystallographic data for cis-pinocarvyl p-nitrobenzoate is good. Data are used for comment upon a published analysis of the lH n.m.r. spectra of pinenes. WE have reported1 that the ene addition of chloral to (-)-( 1S,5S)-pin-2( 10)-ene is highly stereoselective when catalysed by a bulky Lewis acid. With iron(II1) chloride a 97 :3 ratio of the two diastereoisomeric ene adducts was obtained. On the basis of steric arguments, the major reaction product was assigned the (S)-configur- ation at the new asymmetric centre formed in the side chain, as indicated in (1). This paper provides the proof for the correctness of that assignment. (1) R=H (2) R = SOH,Me-plo H Initially it was intended that X-ray methods would be used to prove absolute configuration by the heavy-atom anomalous dispersion procedure.The mixture of the 9-bromobenzoate esters of (1) and its diastereoisomer were prepared for this purpose, but unfortunately could not be induced to crystallise. Since, however, the structural integrity of the pinene skeleton is retained in the formation of the ene adduct, the absolute stereo- chemistry at the new chiral centre can be assigned relative to the known absolute stereochemistry about the chiral bridgehead carbon atoms of the hydrocarbon moiety. The crystalline tosylate derivatives of the mixture of alcohols could not be prepared by the usual derivatisation procedure, which employs toluene-$-sulphonyl chloride and pyridine, for the reason that ester formation was very slow.It seemed likely, therefore, that electron withdrawal by the C1,C group sufficiently deactivated the nucleophilic hydroxy-function in (1) and its isomer as to make attack on the sulphonyl chloride electronically difficult. Accordingly, the alcohol mixture was converted into the corresponding sodium alkoxides by heating under reflux with sodium hydride in diethyl ether, thereby facilitating the subsequent reaction with tosyl chloride. The ester of the minor alcohol component in the ene adduct mixture was readily removed by fractional crystallisation of the mixture of tosylates from ethanol, to give pure tosyl ester (2) of constant m.p.and specific rotation. Since tosylate formation does not involve alkyl oxygen fission in the alcohol, the ester will have the same absolute stereochemistry about the chiral carbon atom as the alkoxide ion from which it is derived. Neverthe-less, it is necessary to ensure that alkoxide formation from the parent alcohol does not result in configurational change, which could arise by hydride transfer from the alkoxide to the corresponding ketone reaction (l) if the ketone is present as an adventitious impurity. The diastereoisomeric alcohol mixture was subjected to the '.. /H+4'C'o-(1) reaction conditions as for the tosyl ester preparation, but without the addition of toluene-9-sulphonyl chloride, and quenched with water to regenerate the hydroxy- compounds from the alkoxide salts.Analysis of the 100 MHz n.m.r. spectrum of the recovered alcohols, using Eu(fod), shift reagent to separate the resonances of the two components in the mixture,l showed there to be no change in the original ratio of diastereoisomers as a consequence of salt formation. EXPERIMENTAL Tosyl Ester (2).-A magnetically stirred suspension of sodium hydride (0.06 g, 0.0025 mol) in dry diethyl ether (3 ml) was warmed by an i.r. lamp to near the reflux tem- perature, and a solution of the (-)-pin-2( 10)-ene-chloral adduct obtained from an iron(1Ir) chloride (1 mole yo) catalysed ene reaction (0.56 g, 0.002 mol) in dry ether (5 ml) was added dropwise at a rate sufficient to maintain a gentle reflux. After completion of the addition (ca.10 min) the boiling mixture was stirred for 0.5 11. A solution of recrystallised toluene-p-sulphonyl chloride (0.42 g, G. B. Gill and B. Wallace, J.C.S. Chem. Comm., 1977, 380, 382. J.C.S. Perkin I 0.0022 mol) in dry ether (5 ml) was added to the warm suspension at a rate sufficient to cause the ether to reflux gently, and the mixture then stirred for 0.5 h, allowed to cool, and diluted with ether (25 ml). Conventional work- up of the reaction mixture afforded a pale yellow oil (0.9 g, 100) which, on treatment with an equal volume of warm ethanol, deposited white crystals. Recrystallisation from ethanol readily removed the impurity of the tosyl ester of the minor alcohol component in the mixture to give ester (2), m.p.79-79.5 "C, -69 "C (CHCl,, c 0.173) (Found: C, 52.0; H, 5.3. Cl,H2,C1,0,S requires C, 52.2; H, 5.3) ; m/e 436.0430 (M" ; C1,H2,35C1,03S+' requires 436.0433), and 265 (M+' -TsOH); t.1.c. (benzene, on silica) RF0.58; i.r. v,,,,(KBr): 2 900, 1 925, 1 600, 1 375, 1 190, and 820 cm-l; 100 MHz n.m.r. T(CDCI,) 2.16 (2 H, d, J 8 Hz), 2.66 (2 H, d, J 8 Hz), 4.59 (1 H, br s, olefinic H), 4.82 (1 H, t, line separation 5 Hz, C-11 proton), 7.10 (1 H, m, C-10 proton), 7.52 (1 H, m, C-10 proton), 7.56 (3 H, s, aromatic CH,), 7.65 (1 H, m, C-7 exo-proton H-7A), 7.76 (2 H, m, C-4 protons), 7.94 (2 H, m, C-1 and C-5 protons), 8.72 (3 H, s, C-8 CH,), 8.92 (1 H, d, line separation 8 Hz, C-7 endo-proton H-7B), and 9.17 (3 H, s, C-9 CH,).This procedure was repeated for the preparation of the sodium alkoxides, and the suspended salts stirred tinder reflux for 1 h. Careful addition of wet ether (20 ml) to the cooled mixture was followed by the slow addition of water (5 ml), and the ethereal solution was then washed with water (10 ml) and the organic layer dried (Na,SO,). Re-moval of the solvent gave a yellow oil (0.45 g, 80.4 recovery) shown by spectral data to be the original alcohol. Analysis of the 100 MHz n.m.r. spectrum recorded in the presence of the lanthanide shift reagent Eu(fod), showed that the ratio of diastereoisomers was identical to the ratio obtained for the original mixture of alcohols isolated from the ene reacti0n.l Hence, alkoxide formation caused no detectable epimerisation of the exocyclic chid carbon atom.Crystallography.-Oscillation and Weissenberg photo-graphs were taken about the a axis of a colourless crystal of ester (2) measuring ca. 0.2 x 0.3 x 0.5 mm, and X-ray intensity data were obtained for the crystal similarly mounted on a Hilger and Watts Y290 automatic four-circle diffractometer by use of Mo-K, radiation. A 20-0 scan up to the value 0 25" was employed. Background was measured at the ends of each scan and reflections with a net count 0.2 ek3. Eleven of these were in the vicinity of the sulphur, chlorine, oxygen, or certain of the carbon atoms, the most intense such peak (0.28 eA-,) being G. Germain, P. Main, and M. M. Wolfson, Acta Cryst., 1971, A27, 368.1978 in the region of the aryl-sulphur bond. The remaining 23 peaks were assigned to the hydrogen atom positions, and four further cycles of full-matrix refinement (fixed co- ordinates and isotropic temperature factor Ujso 0.05 for hydrogen atoms ; temperature factors of other atoms allowed to vary anisotropically) reduced R to 0.0447. TABLE2 Molecular geometry, with standard deviations in parentheses (a) Interatomic distances (A) C(l)-C(2) 1.502(10) C(12)-Cl(l) 1.769( 7) c(1)-c (6) 1.566(10) C( 12)-C1( 2) 1.748( 7) 1.569( 10) C(12)-C1(3) 1.759(8):;;I: I;; 1.3 13( 10) 0(1)-s(2) 1.602( 5) C(2)-C(lO) 1.527(10) S(1)-0(2) 1.404(5) C(3)-C(4) 1.510(11) 1.422 (5) ::;2()c(4)-C(5) 1.503(11) 1.739(7) c(5)-C( 6) 1.538( 10) C( 13)-C( 14) 1.404( 9) C(5)-C(7) 1.541(11) C(13)-C(18) 1.393 (9) C(S)-C(S) 1.510(11) C(14)-C(15) 1.380(10) C(6)-C(9) 1.489( 10) C( 15)-C( 16) 1.407(10)c(1O)c-ll) 1,558( 10) C( 16)-C( 17) 1.381 (9) C(l1)-C(12) 1.531(9) C( 16)-C( 19) 1.483(9)C( 11)-O( 1) 1.420(8) C( 17)-C( 18) 1.3 83 (10) (b) Interatomic angles (") C(1)-C( 2)-c(3) 118.9( 7) C(11)-C( 12)-C1( 3) 108.7(5)C(l)-C(2)-C(lO) 119.3(7) C( 11)-O( 1)-S( 1) 123.8 (4) C( l)-C(6)-C(5) 85.5(6) C1(1)-c( 12)-C1( 2) 109,4( 4) C(1)-C( 6)-C (8) 111.2(7) C1(1)-c(12)-C1(3) 107.7 (4) C( 1)-C (6)-C (9) 118.2(6) C1(2)-C (12)-C1(3) 110.0(4)C(l)-C(7)-C(5) 85.3 (6) C( 12)-C( 11)-0 (1) 107.2(5) C (2)-C (1)-C ( 6) 110.8 (6) 0(1)-S( 1)-O( 2) 106.1(3)C(2)-C( 1)-c ( 7) 1034 7) 0(1)-S (1)-0(3) 108.7(3) C( 2)-C( 3)-c (4) 118.2(8) O(1)-S(1)-C( 13) 100.4( 3) C(2)-C(lO)-C(ll) 112.9(6) O(2)-S( 1)-0(3) 120.2( 3) C( 3)-C( S)-C( 10) 12 1.8 (8) 0(2)-S(l)-C(13) 108.9(3)C( 3)-C(4)-C (5) 110.7 (6) 0(3)-S( 1)-C( 13) 110.6(3)C (4)-C (5)-C (6) 111.1( 7) S(1)-C( 13)-C( 14) 11 9.6( 5) C(4)-C(5)-C(7) 109.2( 7) S(1)-C( 13)-C( 18) 120.7( 5) C( 5)-C( 6)-C (8) 111.2(7) C(l3)-C(14)-C(l5) 119.4( 7) C(5)-C( 6)-C( 9) 121.2( 7) C( 13)-C ( 18)-C ( 17) 119.8 (6) C( 6)-C ( 1) -c(7) 86.4(6) C(14)-C(13)-C(18) 119.7(6) C(6)-C(5)-C(7) 88.4(6) C( 14)-C(15)-C(16) 121.3(7)C( 8)-C( 6)-C (9) 108.1(7) C( 15)-C( 16)-C( 17) 118.2(6)C( 10) -C ( 1 1) -C ( 12) 112.1 (6) C(l5)-C(l6)-C( 19) 120.8(7)C( lO)-C( 11)-0 ( 1) 106.8 (6) C(16)-C(17)-C(18) 12 1.6( 6) C(ll)-C(l2)-Cl(l) 109.2(5) C( 17)-C( 16)-C( 19) 120.9( 7) C(11)-C( 12)-C1( 2) 111.8(5) Analysis of the agreement between IF, and IF, over ranges of IFo and sinO/A indicated that unit weights were satisfactory.The largest parameter shifts were <0.la, showing that refinement had converged. Final atomic positions are listed in Table 1. Observed and calculated structure factors and anisotropic thermal parameters are listed in Supplementary Publication No. SUP 22149 (18 pp.).* Computation was achieved with the aid of the program CRYSTALS,4and the molecular structure diagrams utilised the plotting program DISCUSSION Bond lengths and angles of the main atoms in the atomic skeleton of the ester (2) are listed in Table 2. The atom numbering convention adopted here is given in Figure 1.No one diagram could be drawn to illus- * See Notice to Authors No. 7, in J.C.S. Pevkin I, 1976, Index issue. trate all the conformational features in (2); the pinene residue is shown to better advantage in a partial structure diagram (Figure 2). Hydrogen atoms (Table 1) are numbered according to the carbon atoms to which they are attached. The arrangement of the molecules in the unit cell is shown in Figure 3. FIGURE The molecular structure of ester (2)1 Y FIGURE A perspective view of the pinene unit in (2)2 Inspection of Figure 1, which was constructed on the basis of the known (1S,5S)-configuration of the pinene skeleton, reveals that C(11) has the (S)-configuration, thereby vindicating our conclusion that the preferred geometry of approach of the enophile (chloral) to the ene component (p-pinene) during reaction is that which minimised the non-bonded interactions between the two reacting mo1ecules.l Since (1) was the major product of the iron(II1) chloride-catalysed ene addition of chloral W.R. Carruthers, personal communication to T. J. King,Nottingham University. Cambridge Data Centre, W. D. S. Motherwell, personal communication to T. J. King, Nottingham University. to (-)-pin-2( lO)-ene, and the catalysed reaction is very much faster than the uncatalysed (thermal) addition, it is clear that the effective enophile is a Cl,CCHO*FeCl, n 0 1;IGuHE 3 Arrangement of molecules in the unit cell complex.It may reasonably be expected that complex formation by the oxygen atom in chloral will occur, so as to place the FeCl, moiety in an anti geometrical relationship to the bulky Cl,C group. Thus, steric interactions during the ene addition are minimised if the larger FeCl, grouping is aligned em relative to the pin-2( 10)-ene skeleton, thereby placing the CI,C group in the endo-geometry, such that the si-face of the chloral molecule is offered to the allylic system of the ene component. The approach of the enophile occurs from the side remote from the C(8) and C(9) methyl groups of the pinene; it is well documented that only the endo-allylic hydrogen atom of pin-2(10)-ene is transferred in ene reactions.6 Development of the carbon-carbon bond thus leads to the formation mainly of (l),which possesses the (S)-configuration at C(ll), by way of the kinetically preferred transition state (3).H The converse arguments apply in the thermally initiated ene addition since now the Cl,C group should J.C.S. Perkin I mainly adopt the e.xo-alignment, so that the re-face of the uncomplexed chloral molecule is offered to the least- hindered face of the allylic system in the olefin. Indeed, we have shown that the other diastereoisomer, which therefore possesses the (R)-configuration at C(11), is the major product of the thermal process (isomer ratio 75 : 25). We are currently examining possible exten- sions of these procedures for the purpose of the synthesis of optically active molecules by employing chiral olefinic systems as templates for ensuring asymmetric induction during ene reactions.Examination of the bond length, bond angle, and dihedral angle data (Tables 2 and 3) reveals marked, TABLE3 Torsion angles (") for the alcohol portion (1) of tosyl ester (2) C(1)-C( 2)-C( 3)-C( 4) C( l)-C(2)-C( 10)-C( 11) C( 1)-C (6)-C (5)-C( 4) C(1)-C( 6)-C( 5)-C (7) C(l)-C(7)-C(5)-C(4) C(1)-C( 7)-C( 5)-C( 6) C(2)-C (1)-C (6)-C( 8) C( 2)-C( 1)-C( 7)-C (5) C( 2)-C(3)-C( 4)-C(5) C( 3)-c (2)-C (1)-c(7) C(3)-C(S)-C( 10)-C( 11) C( 3)-C( 4)-C( 5)-C( 6) C(4)-C( 3)-C( 2)-C( 10) C( 4) -C (5)-C (6)-C (8) C(4)-C( 5)-C (6)-C (9) C(5)-C(7)-C(l)-C(6)C(6)-C (1)-C (2)-C ( 10) C(7)-C( 1)-C( 6) -C (8) C(2)-C( l)-C(6)-C( 5) C(2)-C( 1)-C( 6)-C( 9) C( 2)-C (10)-c (11)-C (12) c(2)-c (10)-c (11)-0(1) C( 3)-C (2) -C (1)-C (6) C(3)-C(4)-C( 5)-C( 7) C(5)-C(6)-C(l)-C(7) c(7)-C(1)-c(2)-c ( 10) C(7)-C( 1)-C( 6)-C( 9) C(7) -C (5)-C (6)-C (8)C(7)-C (5)-C( 6)--C (9) C( 10)-C( 11)-C( 12)-C1( 1)C(lO)-C(11)-C(12)-C1(2) C( lO)-C( 11)-C( 12)-C1(3) O(1)-C( 11)-C( 12)-C1(2) O(1)-C( 11)-C( 12)-C1( 1) O(l)-C(11)-C(l2)-C1(3) -1.7 -82.5 -81.5 28.5 83.3 -173.6 -47.7 -82.6 -1.8 149.0 -93.9 -41.8 49.6 100.5 50.9 175.3 167.6 38.9 27.9 141.2 83.1 -28.4 75.4 -45.0 -28.0 -127.5 -151.1 -82.5 148.8 176.9 55.7 -61.1 -65.9 60.0 177.3 but expected, distortion of the four-membered ring C(l),C(6),C(5),C(7) of the pinene moiety.Particularly noticeable features are the puckering of this ring, and the appreciable lengthening of the C(l)-C(6) and C(l)-C(7) bonds relative to C(5)-C(6) and C(5)-C(7). The angles formed by the bridgehead atoms C(l) and C(5) are therefore slightly larger than the angles formed by the other two atoms of the ring, C(6) and C(7).The distortion of this part of the molecule is undoubtedly enhanced by the effects of unsaturation at C(2)-C(3). The very low values of dihedral angles C(l)-C(Z)-C(3)-C(4) (-1.7") and C(2)-C(3)-C(4)-C(5) (-1.8") indicates V. Garsky, D. F. Koster, and K. T. Arnold, J. Amer. Chem. SOC.,1974, 96, 4207; R. I<. Hill, J. W. Morgan, R. V. Shetty, and M. E. Synerholm, ibid.,p. 4201. 1978 the near-coplanarity of the atoms within these units. The computed distances of the five ring atoms C(1)-(5) from the least-squares plane through this molecular fragment (atoms weighted equally in the calculation) are, respectively, 0.023, -0.019, -0.002, 0.022, and -0.024 A.The angle between the planes containing C(l),C(6),C(5) is 140.1",and the angles and C(l),C(7),C(5) between each of these planes and the least-squares plane through C(1)-(5) are, respectively, 66.8 and 73.3". Hence, the pinene unit of (2) when viewed along the C(l) -C(5) axis approximates remarkably well to a Y-shaped molecule. Other notable features are the appreciable widening of the C(5)-C(6)-C(9) and C(l)-C(6)-C(9) bond angles from the tetrahedral value of 109.5". These are a consequence of the strained four-membered ring ; where-as the C(S)-C(S)-C(S)bond angle is near the tetrahedral value, the angle C(l)-C(6)-C(5) is, of course, less than 90". Contrary to expectation, bonds C(l)-C(2) and C(3)-C(4) are not shorter than C(4)-C(5) but are all of equal length, even though the first two bonds involve the trigonal ring atoms C(2) and C(3).This feature again illustrates the distortion created by the double bond C(B)-C(3),and the tendency toward the equalis- ation of strain throughout the molecule. The mean C-C bond length within the benzene ring is 1.391 A,and all bonds are equivalent within experi-mental error. The average distance of the aromatic carbon atoms from the least-squares plane through the ring (all atoms weighted equally) was 0.010 A, the largest distance being 0.016 A. The atom C(19) was 0.048 A from this mean plane, whilst S(l) lay 0.006 A from it.The mean bond angle within the benzene ring was 120.0", with no angle deviating significantly from this mean value. Few crystallographic or other physical studies have been concerned with the details of the molecular structure of the pinene skeleton, and it is worthwhile drawing such comparisons as are possible.* One is that between the crystal and molecular structure of cis-pinocarvyl p-nitrobenzoate (cis-PNB),7 a molecule based on the pin-2( 10)-ene skeleton exocyclic double bond at C(Z) and of (2) which is a derivative of x-pinene endocyclic double bond between C(2) and C(3). Excluding there- fore comparisons at, or including, C(2) and C(3) in the two systems, bond-length agreements are within k0.025 A except for the C(6)-C(9)bond which is 0.03 A shorter in (2); hence, all differences lie within the range of experimental error.Bond-angle agreements are all within k2' except for C(5)-C(6)-C(9) which is 2.9" larger in (Z), and C(Z)-C(l)-C(7) which is 7.1" smaller in (2). This last case, however, includes C(2), an atom which is nut strictly comparable in its two different situations. The exclusion of C(2) and C(3) disqualified comparison of eight of the fourteen ring torsion angles; the remaining six agree to within k1.5" in the two systems. The angles between plane C(1), C(6), and C(5) and plane C(l),C(7),C(5)agree to within 1". The correlation between the relevant portions of (2) and cis-PNB is therefore extremely good.The assignment of the lH n.m.r. spectrum of (2) (see Experimental section) relies on comparison with litera- ture data,2 which itself depends upon assumed or deduced bond angles and dihedral angles and upon the applicability of the Karplus equation to such strained- ring systems. In the case of pin-2-ene (the most direct compaIison) several of the assumptions are broadly justified, for example the planarity of the C(1)-(5) unit and a C(5)-C(7)-C(l) angle of ca. 87". However, an assigned dihedral angle of the cyclobutane part of ca. 150"is seen to be ca. 9-10" too large; as a consequence, the deduction that the H-C-H angle in the cyclobutane is much smaller than tetrahedral is incorrect, the angle H(7A)-C(7)-H(7B) is 112.0(8)".The lack of observable IH couplings J1,7a and J5,7R was rationalised in terms of the Karplus cos2$ relationship by assuming the torsion angles H(7B)-C (7)-C( 1)-H( 1)and H(7B)-C(7) -C( 5)-H (5) to be close to 85"; in fact these values are, respectively, -94.4 and 84.4", making the reason for the lack of coupling a little clearer. The lH coupling constants J1,7* and J5,7A. of ca. 5.5 Hz were thought reasonable for the assumed dihedral angles of ca. 40". However, in (2) the torsion angles H(l)-C(l)-C(7)-H(7A) and H(5)-C(5)-C( 7)-H( 7A) are, respectively, 33.6and -49.6". Thus, the fact that J5,7* J1,7A in the pinene series can be explained in terms of the larger dihedral angle for H(5)-C(5)-C(7)-H(7A) rather than in terms of differences in electronegativity i.e. C(l) is usually attached to a more electronegative sp2 hybridised carbon atom;. The structural analysis of (1)by means of this study of its tosylate ester serves a second purpose. Reaction of the chloral-olefin ene adducts with excess of sodium ethoxide in dry ethanol affords, after aqueous acid work-up, the u-ethoxy-carboxylic acids reaction (S) RCH-OHCCl, -KCH(OEt)-CO,H (2) in nearly quantitative yie1d.l Various features of this reaction are puzzling, but the availability of an ene adduct of known absolute configuration at the chiral centre will considerably assist in the study of the stereochemistry and mechanism of reaction (2). We thank the S.R.C. for a maintenance grant (to B. W.). * We thank a referee for suggestions concerning this section 7 G. F. Richards, R. A. Moran, J. A. Heitmann, and W. E. Scott, .I. 0i.g. Chem., 1974, 39,86.
机译:1978 93 (1,S,5S)-6,6-二甲基-2-[(2S)-3,3,3-三氯-2-羟丙基]双环[3.1.I]庚-2-烯的甲苯磺酸酯的X射线结构分析,氯醛在(-)-(lS,5S)-Pin-2(lO)-ene中的主要产物氯醛加成(-)-(lS,5S)-Pin-2(lO)-ene,作者:Michael J. Begley,G.Bryon Gill,“和Brian Wallace,大学化学系, 诺丁汉 NG7 2RD 通过直接方法从衍射仪数据中测定标题化合物 (2) 的晶体结构。晶体是正交的,空间群P212121,Z = 4 在尺寸为:a = 13.076(4),b = 9.858(3),c = 16.234(4) A;通过全矩阵最小二乘法将结构细化为R 0.0447,无需求助于加权分析,用于1 547次独立反射。(2)中蒎烯骨架的构象与已发表的顺式松果烯基对硝基苯甲酸酯晶体学数据的相关性良好。数据用于对已发表的蒎烯酸 lH n.m.r. 光谱分析进行评论。我们已经报道了1,当被笨重的路易斯酸催化时,氯醛加入到(-)-(1S,5S)-pin-2(10)-ene中具有高度立体选择性。用氯化铁(II1)得到两种非对映异构体烯加合物的比例为97:3。在空间论证的基础上,主要反应产物在侧链中形成的新不对称中心处被赋予了(S)构型,如(1)所示。本文为该作业的正确性提供了证明。(1) R=H (2) R = SO&H,Me-plo H 最初打算使用X射线方法通过重原子异常色散程序来证明绝对构型。为此目的制备了(1)的9-溴苯甲酸酯及其非对映异构体的混合物,但不幸的是不能诱导结晶。然而,由于蒎烯骨架的结构完整性在烯加合物的形成中得以保留,因此可以相对于碳氢化合物部分的手性桥头碳原子的已知绝对立体化学来分配新手性中心的绝对立体化学。醇混合物的结晶甲苯磺酸盐衍生物不能通过通常的衍生化程序制备,该过程采用甲苯-$-磺酰氯和吡啶,因为酯的形成非常缓慢。因此,C1,C基团的电子撤回似乎足以使(1)中的亲核羟基官能团及其异构体失活,从而使对磺酰氯的攻击变得困难。因此,通过与乙醚中的氢化钠回流加热,将醇混合物转化为相应的醇盐钠,从而促进随后与甲苯磺酰氯的反应。通过乙醇中甲苯磺酸酯混合物的分馏结晶,可以很容易地除去烯加合物混合物中次要醇组分的酯,得到具有恒定熔点和比旋光度的纯甲苯磺酰酯(2)。由于甲苯磺酸盐的形成不涉及醇中的烷基氧裂变,因此酯对手性碳原子具有与其衍生的醇盐离子相同的绝对立体化学。尽管如此,有必要确保母醇形成的醇盐不会导致构型变化,如果酮作为外源杂质存在,则氢化物从醇盐转移到相应的酮[反应(l)]可能会引起构型变化。将非对映异构体醇混合物进行'../H+4'C'o-(1)的反应条件与制备甲苯磺酰酯相同,但不加入甲苯-9-磺酰氯,并用水淬火使醇盐中的羟基化合物再生。使用Eu(fod)、移位试剂分离混合物中两种组分的共振,对回收的醇的100 MHz n.m.r.光谱进行分析,l表明,由于盐的形成,非对映异构体的原始比例没有变化。实验 将氢化钠(0.06g,0.0025mol)在干燥乙醚(3ml)中的磁力搅拌悬浮液加热。将灯点燃至回流温度附近,并将从氯化铁(1 mol yo)催化烯反应(0.56 g,0.002 mol)在干醚(5 ml)中以足以维持温和回流的速率滴加得到的(-)-pin-2(10)-烯-氯醛加合物的溶液。加入完成后(约10分钟),将沸腾的混合物搅拌0.5 11.将重结晶甲苯对磺酰氯(0.42g,G.B.Gill和B.Wallace,J.C.S.Chem.Comm.,1977,380,382.J.C.S.Perkin I 0.0022mol)在干乙醚(5ml)中的溶液加入到温热的悬浮液中,其速率足以使乙醚轻轻回流,然后将混合物搅拌0.5小时,使其冷却, 并用乙醚(25毫升)稀释。反应混合物的常规处理得到淡黄色油(0.9克,100%),在用等体积的温乙醇处理后,沉积白色晶体。用乙醇重结晶容易除去混合物中次要醇组分的甲苯磺酰酯的杂质,得到酯(2),m.p.79-79.5“C,-69”C(CHCl,,c 0.173)(发现:C,52.0;H,5.3。Cl,H2,C1,0,S需要C,52.2;H, 5.3%) ;m/e 436.0430 (米“ ;C1,H2,35C1,03S+' 需要 436.0433) 和 265 (M+' -TsOH);t.1.c. (苯,二氧化硅) RF0.58;I.r. v,,,,(KBr):2 900、1 925、1 600、1 375、1 190 和 820 cm-l;100 MHz n.m.r. T(CDCI,) 2.16 (2 H, d, J 8 Hz), 2.66 (2 H, d, J 8 Hz), 4.59 (1 H, br s, 烯烃 H), 4.82 (1 H, t, 线间隔 5 Hz, C-11 质子), 7.10 (1 H, m, C-10 质子), 7.52 (1 H, m, C-10 质子), 7.56 (3 H, s, 芳香族 CH,), 7.65 (1 H, m, C-7 外质子 H-7A), 7.76 (2 H, m, C-4 质子), 7.94 (2 H, m, C-1 和 C-5 质子), 8.72 (3 H, s, C-8 CH,), 8.92 (1 H, d, 线分离 8 Hz, C-7 内质子 H-7B), 和 9.17 (3 H, s, C-9 CH,)。重复该程序制备醇盐钠,悬浮盐搅拌火种回流1小时。小心地将湿醚(20ml)加入冷却的混合物中,然后缓慢加入水(5ml),然后用水(10ml)洗涤空灵溶液,干燥有机层(Na,SO,)。重新去除溶剂得到黄色油(0.45克,回收率为80.4%),光谱数据显示为原始醇。对在镧系元素位移试剂Eu(fod)存在下记录的100 MHz n.m.r.光谱的分析表明,非对映异构体的比例与从烯反应物0n.l中分离出的原始醇混合物的比例相同。晶体学-振荡和魏森伯格照片图围绕酯(2)的无色晶体的轴线拍摄,尺寸约为0.2 x 0.3 x 0.5 mm,并使用Mo-K辐射获得了类似安装在Hilger和Watts Y290自动四圆衍射仪上的晶体的X射线强度数据。采用20-0扫描,最高值为0 25”。在每次扫描结束时测量背景,净计数为 0.2 ek3。其中11个位于硫、氯、氧或某些碳原子附近,最强烈的峰值(0.28 eA-,)是G. Germain, P. Main和M. M. Wolfson, Acta Cryst., 1971, A27, 368.1978在芳基硫键区域。剩下的23个峰被分配给氢原子的位置,并进一步进行四个循环的全基质细化(氢原子的固定坐标和各向同性温度因子Ujso 0.05;其他原子的温度因子允许各向异性变化)将R降低到0.0447。表2 分子几何形状,括号内为标准偏差 (a) 原子间距离 (A) C(l)-C(2) 1.502(10) C(12)-Cl(l) 1.769( 7) c(1)-c (6) 1.566(10) C( 12)-C1( 2) 1.748( 7) 1.569( 10) C(12)-C1(3) 1.759(8):[;;我:我;;1.3 13( 10) 0(1)-s(2) 1.602( 5) C(2)-c(lO) 1.527(10) s(1)-0(2) 1.404(5) c(3)-c(4) 1.510(11) 1.422 (5) ::;]2(%)C(4)-C(5) 1.503(11) 1.739(7) C(5)-C( 6) 1.538( 10) C( 13)-C( 14) 1.404( 9) C(5)-C(7) 1.541(11) C(13)-C(18) 1.393 (9) C(S)-C(S) 1.510(11) C(14)-C(15) 1.380(10) C(6)-C(9) 1.489( 10) C( 15)-C( 16) 1.407(10)C(1O)c-ll) 1,558( 10) C( 16)-C( 17) 1.381 (9) C(l1)-C(12) 1.531(9) C( 16)-C( 19) 1.483(9)C( 11)-O( 1) 1.420(8) C( 17)-C( 18) 1.3 83 (10) (b) 原子间角 (“) C(1)-C( 2)-C(3) 118.9( 7) C(11)-C( 12)-C1( 3) 108.7(5)C(l)-C(2)-C(lO) 119.3(7) C( 11)-O( 1)-S( 1) 123.8 (4) C( l)-C(6)-C(5) 85.5(6) C1(1)-C( 12)-C1(2) 109,4( 4) C(1)-C( 6)-C (8) 111.2(7) C1(1)-C(12)-C1(3) 107.7 (4) C( 1)-C (6)-C (9) 118.2(6) C1(2)-C (12)-C1(3) 110.0(4)C(l)-C(7)-C(5) 85.3 (6) C( 12)-C( 11)-0 (1) 107.2(5) C (2)-C ( 1)-C ( 6) 110.8 (6) 0(1)-S( 1)-O( 2) 106.1(3)C(2)-C( 1)-C ( 7) 1034 7)0(1)-S (1)-0(3) 108.7(3) C( 2)-C( 3)-C (4) 118.2(8) O(1)-S(1)-C( 13) 100.4( 3) C(2)-C(lO)-C(ll) 112.9(6) O(2)-S( 1)-0(3) 120.2( 3) C( 3)-C( S)-C( 10) 12 1.8 (8) 0(2)-S(L)-C(13) 108.9(3)C( 3)-C(4)-C (5) 110.7 (6) 0(3)-S( 1)-C( 13) 110.6(3)C (4)-C (5)-C (6) 111.1( 7) S(1)-C( 13)-C( 14) 11 9.6( 5) C(4)-C(5)-C(7) 109.2( 7) S(1)-C( 13)-C( 18) 120.7( 5) C( 5)-C( 6)-C (8) 111.2(7) C(l3)-C(14)-C(l5) 119.4( 7) C(5)-C( 6)-C( 9) 121.2( 7) C( 13)-C ( 18)-C ( 17) 119.8 (6) C( 6)-C ( 1) -c(7) 86.4(6) C(14)-C(13)-C(18) 119.7(6) C(6)-C(5)-C(7) 88.4(6) C( 14)-C(15)-C(16) 121.3(7)C( 8)-C( 6)-C (9) 108.1(7) C( 15)-C( 16)-C( 17) 118.2(6)C( 10) -C ( 1 1) -C ( 12) 112.1 (6) C(l5)-C(l6)-C( 19) 120.8(7)C( lO)-C( 11)-0 ( 1) 106.8 (6) C(16)-C(17)-C(18) 12 1.6( 6) C(ll)-C(l2)-Cl(l) 109.2(5) C( 17)-C( 16)-C( 19) 120.9( 7) C(11)-C( 12)-C1( 2) 111.8(5) IF,]和IF,]在IFo&bsol范围内的一致性分析; sinO/A表明单位重量令人满意。最大的参数偏移是<0.la,表明细化已经收敛。最终原子位置列于表1中。观测和计算的结构系数和各向异性热参数列在补充出版物编号中。SUP 22149(18 页)。* 计算是在程序 CRYSTALS 的帮助下实现的,4 并且利用绘图程序绘制了分子结构图 讨论 酯 (2) 原子骨架中主要原子的键长和角度列于表 2 中。这里采用的原子编号约定如图 1.No 所示,可以绘制一个图表来说明- * 参见作者通知第7号,J.C.S. Pevkin I,1976年,索引问题。对(2)中的所有构象特征进行分类;蒎烯残留物在部分结构图中显示出更好的优势(图2)。氢原子(表1)根据它们所附着的碳原子进行编号。分子在晶胞中的排列如图3所示。图 酯(2)1 Y 的分子结构 图 (2)2 中蒎烯单元的透视图 图 1 是根据已知的蒎烯骨架 (1S,5S) 构型构建的,结果显示 C(11) 具有 (S) 构型,从而证明了我们的结论,即在反应过程中亲烯试剂(氯醛)与烯组分(对蒎烯)接近的首选几何形状是最小化非键合的几何形状两个反应Mo1Ecules之间的相互作用。l 由于(1)是氯醛的铁(II1)催化烯加成的主要产物,W.R. Carruthers,与诺丁汉大学的T.J.King的个人通信。剑桥数据中心,W. D. S. Motherwell,与诺丁汉大学T. J. King的个人通信。至(-)-pin-2(lO)-ene,催化反应比未催化(热)加成反应快得多,很明显,有效的亲烯试剂为Cl,CCHO*FeCl,n 0 1;IGuHE 3 晶胞复合物中分子的排列。可以合理地预期,氧原子在氯醛中会形成络合物,从而使FeCl部分与体积较大的Cl,C基团处于反几何关系中。因此,如果较大的FeCl,基团相对于pin-2(10)-ene骨架对齐,则烯加成过程中的空间相互作用最小化,从而将CI,C基团置于内几何形状中,使得氯醛分子的si面提供给烯组分的烯丙基体系。亲烯试剂的接近发生在远离蒎烯的C(8)和C(9)甲基的一侧;有据可查的是,在烯反应中只有pin-2(10)-ene的内烯丙基氢原子被转移.6因此,碳-碳键的发展主要导致(l)的形成,它在C(ll)处具有(S)构型,通过动力学上优选的过渡态(3)。H 相反的论点适用于热引发烯加成,因为现在 Cl,C 基团应该 J.C.S. Perkin I 主要采用 e.xo 取向,以便将未络合的氯醛分子重新呈现到烯烃中烯丙基体系的受阻最小面。事实上,我们已经证明,另一种非对映异构体,因此在C(11)处具有(R)-构型,是热过程的主要产物(异构体比为75:25)。我们目前正在研究这些程序的可能扩展,以通过使用手性烯烃系统作为模板来确保烯反应期间的不对称诱导,以合成光学活性分子。对键长、键角和二面角数据(表 2 和表 3)的检查显示,表 3 对甲苯磺酸酯醇部分 (1) 的扭转角 (“) (2) C(1)-C( 2)-C( 3)-C( 4) C( l)-C(2)-C( 10)-C( 11) C( 1)-C (6)-C (5)-C( 4) C(1)-C( 6)-C( 5)-C (7) C(l)-C(7)-C(5)-C(4) C(1)-C( 7)-C( 5)-C( 6) C(2)-C (1)-C (6)-C( 8) C( 2)-C( 1)-C( 7)-C (5) C( 2)-C(3)-C( 4)-C(5) C( 3)-C (2)-C (1)-C(7) C(3)-C(S)-C( 10)-C( 11) C( 3)-C( 4)-C( 5)-C( 6) C(4)-C( 2)-C( 10) C( 4) C( C( 4) C( C( C) ( C( C) C( C( C) C( C) C( C) C( C) C( C( C) C( C) C( C) C( C ( C)5)-C(7)-C(l)-C(6)C(6)-C(1)-C(2)-C(10)C(7)-C(1)-C(6)-C(8)C(2)-C(l)-C(6)-C(5)C(2)-C(1)-C(6)-C(9)C(2)-C(10)-C(11)-C(12)C(2)-C(10)-C(10)-C(10)-C(10)-C(11)-C(11)-C(11)-C(2)-C(2)-C(1)C(1)-C(6)-C(6)C(3)-C(6)-C(6)C(3)-C(6)-C(6)C(3)-C(6)C(3)-C(6)C(3)-C(6)-C(6)C(3)-C(6)C(3)-C(6)C(3)-C(6)C(3)-C(6)C(3)-C(6)C(3)-C(6)-C(7)C(5)-C(6)C(5)-C(6)C(5)-C(6)C(5)-C(6)C(5)-C(6)C(5)-C(6)C(5)-C(6)C(5)-C(6)C(5)-C(6)C(5)-C(6)C(5)-C(6)C(5)-C(6)C(5)C(5)-C(6)C(5)C(5)-C(6)C(5)C(5)-C(6)C(5)C(5)C(5)-C(6)C(5)C(5)-C(6)C(5)C(5)-C(6)C(2)-C(10)-C(11)-C(12)C(2)-C(10)-C(10)-C(10)-C(10)-C(11)-C(11)-C(11)-C(11)-C(11)-C(11)-C(11)-C(l)-C(7) C(7)-C(1)-C(2)-C ( 10) C(7)-C( 1)-C( 6)-C( 9) C(7) -C (5)-C (6)-C (8)C(7)-C (5)-C( 6)--C (9) C( 10)-C( 11)-C( 12)-C1( 1)C(lO)-C(11)-C(12)-C1(2) C( lO)-C( 11)-C( 12)-C( 12)-C( 12)-C( 12)-C1(1) O(l)-C(11)-C(l2)-C1(3) -1.7 -82.5 -81.5 28.5 83.3 -173.6 -47.7 -82.6 -1.8 149.0 -93.9 -41.8 49.6 100.5 50.9 175.3 167.6 38.9 27.9 141.2 83.1 -28.4 75.4 -45.0 -28.0 -127.5 -151.1 -82.5 148.8 176.9 55.7 -61.1 -65.9 60.0 177.3 但预期,四元环C(l),C(6),C(5),C(7)的蒎烯部分。特别明显的特征是该环的褶皱,以及 C(l)-C(6) 和 C(l)-C(7) 键相对于 C(5)-C(6) 和 C(5)-C(7) 键的明显延长。因此,桥头原子 C(l) 和 C(5) 形成的角度略大于环的其他两个原子 C(6) 和 C(7) 形成的角度。毫无疑问,这部分分子的变形会因 C(2)-C(3) 的不饱和效应而增强。二面角 C(l)-C(Z)-C(3)-C(4) (-1.7“) 和 C(2)-C(3)-C(4)-C(5) (-1.8”) 的极低值表示 V. Garsky, D. F. Koster, and K. T. Arnold, J. Amer. Chem. SOC.,1974, 96, 4207;R.I<。Hill, J. W. Morgan, R. V. Shetty, and M. E. Synerholm, 同上,第4201页。1978年,这些单元内原子的近共面性。五个环原子C(1)-(5)从最小二乘平面通过该分子片段(计算中权重相等的原子)的计算距离分别为0.023、-0.019、-0.002、0.022和-0.024 A.包含C(l),C(6),C(5)的平面之间的夹角为140.1“,夹角和C(l),C(7),这些平面中的每一个和通过 C(1)-(5) 的最小二乘平面之间的 C(5) 分别为 66.8 和 73.3”。因此,当沿 C(l) -C(5) 轴观察时,(2) 的蒎烯单元非常接近 Y 形分子。其他值得注意的特征是C(5)-C(6)-C(9)和C(l)-C(6)-C(9)键角从109.5“的四面体值明显增宽。这些是应变的四元环的结果;其中,由于 C(S)-C(S)-C(S) 键角接近四面体值,因此角 C(l)-C(6)-C(5) 当然小于 90”。与预期相反,键 C(l)-C(2) 和 C(3)-C(4) 不短于 C(4)-C(5),但长度相等,即使前两个键涉及三角环原子 C(2) 和 C(3)。这一特征再次说明了双键C(B)-C(3)产生的畸变,以及整个分子中应变均衡的趋势。苯环内的平均C-C键长为1.391 A,所有键在经验误差范围内均等效。芳香族碳原子从最小二乘平面穿过环的平均距离(所有原子权重相等)为0.010 A,最大距离为0.016 A。原子 C(19) 距离该平均平面 0.048 A,而 S(l) 距离该平均平面 0.006 A。苯环内的平均键角为120.0“,没有角度与该平均值有明显偏差。很少有晶体学或其他物理研究关注蒎烯骨架分子结构的细节,因此值得尽可能地进行比较。 一个是基于pin-2(10)-ene骨架[C(Z)处的外环双键]的顺-松果烯基对硝基苯甲酸酯(cis-PNB)7的晶体和分子结构,以及(2)是x-蒎烯的衍生物[C(2)和(2)之间的内环双键]C(3)]。除去两个系统中C(2)和C(3)的比较,债券长度协议在k0.025 A以内,但C(6)-C(9)债券为0。03 (2)中的A较短;因此,所有差异都在实验误差范围内。键角协议都在k2'以内,除了C(5)-C(6)-C(9)在(Z)中大2.9“,C(Z)-C(l)-C(7)在(2)中小7.1”。然而,最后一种情况包括 C(2),一个在两种不同情况下严格可比的原子。排除 C(2) 和 C(3) 使 14 个环扭转角中的 8 个不合格的比较;其余六个同意在两个系统中的K1.5英寸以内。平面 C(1)、C(6) 和 C(5) 与平面 C(l)、C(7)、C(5) 之间的夹角一致在 1“ 以内。因此,(2)的相关部分与顺式PNB之间的相关性非常好。(2) 的 lH n.m.r. 谱的分配(见实验部分)依赖于与文字数据的比较,2 这本身取决于假设或推导的键角和二面角,以及 Karplus 方程对此类应变环系统的适用性。在pin-2-ene(最直接的compaIison)的情况下,有几个假设是广泛合理的,例如C(1)-(5)单元的平面度和C(5)-C(7)-C(l)角约为87”。然而,约150“的环丁烷部分的指定二面角被认为约9-10”太大;因此,环丁烷中H-C-H角远小于四面体的推论是不正确的,角H(7A)-C(7)-H(7B)为112.0(8)”。假设扭转角 H(7B)-C (7)-C( 1)-H( 1) 和 H(7B)-C(7) -C(7) -C(5)-H (5) 接近 85“,从而根据 Karplus cos2$ 关系合理化了缺乏可观测的 IH 耦合 J1,7a 和 J5,7R;事实上,这两个值分别是 -94.4 和 84.4“,这使得缺乏耦合的原因更加清晰。lH耦合常数J1,7*和J5,7A.约为5.5 Hz,对于假设的约40“的二面角被认为是合理的。然而,在(2)中,扭转角H(l)-C(l)-C(7)-H(7A)和H(5)-C(5)-C(7)-H(7A)分别为33.6和-49.6”。因此,蒎烯系列中的J5,7* J1,7A这一事实可以用H(5)-C(5)-C(7)-H(7A)的较大二面角来解释,而不是用电负性的差异来解释[即C(l)通常附着在电负性更强的sp2杂化碳原子上;。通过对甲苯磺酸酯的研究对(1)进行结构分析还有第二个目的。氯醛-烯加合物与过量的乙醇钠在干燥乙醇中的反应,在水性酸处理后,u-乙氧基-羧酸[反应(S)] RCH-OHCCl,-KCH(OEt)-CO,H (2) 在近乎定量的yie1d.l中,该反应的各种特征令人费解,但是在手性中心提供已知绝对构型的烯加合物将大大有助于研究立体化学和反应机理 (2).我们感谢 S.R.C. 提供(给 B. W.)的维护补助金。* 我们感谢裁判员对本节的建议 7 G. F. Richards, R. A. Moran, J. A. Heitmann, and W. E. Scott, .I. 0i.g.化学, 1974, 39,86.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号