【24h】

Dependence of the hydration status of bacterial light-harvesting complex 2 on polyol cosolvents

机译:Dependence of the hydration status of bacterial light-harvesting complex 2 on polyol cosolvents

获取原文
获取原文并翻译 | 示例
           

摘要

Low molecular weight (MW) polyols are organic osmolytes influencing protein structure and activity. We have intended to investigate the effects of low MW polyols on the optical and the excited-state properties of the light-harvesting complex 2 (LH2) isolated from the photosynthetic bacterium Thermochromatium (Tch.) tepidum, a thermophile growing at similar to 50 degrees C. Steady state spectroscopy demonstrated that, on increasing glycerol or sorbitol fractions up to 60 (polyol/water, v/v), the visible absorption of carotenoids (Crts) remained unchanged, while the near infrared Q(y) absorption of bacteriochlorophyll a (BChl) at 800 nm (B800) and 850 nm (B850) varied slightly. Further increasing the fraction of glycerol (but not sorbitol) to 80 (v/v) induced distinct changes of the near infrared absorption and fluorescence spectra. Transient absorption spectroscopy revealed that, following the fast processes of BChl-to-Crt triplet energy transfer, rather weak Q(y) signals of B800 and B850 remained and evolved in phase with the kinetics of triplet excited state Crt ((3)Crt*), which are attributed to the Q(y) band shift as a result of (3)Crt*-BChl interaction. The steady state and the transient spectral responses of the Q(y) bands are found to correlate intimately with the water activity varying against polyol MW and mixing ratio, which are rationalized by the change of the hydration status of the C-and N-termini of LH2. Our results suggest that, with reference to the mesophilic purple bacterium Rhodobacter sphaeroides 2.4.1, Tch. tepidum adopts substantially more robust LH2 hydration against the osmotic effects from the low MW polyols.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号