首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Selective electrophilic additions of mixed bifunctionalized trimethylenemethane dianion synthons
【24h】

Selective electrophilic additions of mixed bifunctionalized trimethylenemethane dianion synthons

机译:混合双官能团化三亚甲基甲烷二阴离子合成子的选择性亲电加成

获取原文
获取外文期刊封面目录资料

摘要

J. CHEM. SOC. PERKIN TRANS. t 1995 Selective Elect rophi Iic Add itions of Mixed Bifunct iona Iized Trimet hylenemet hane Dian ion Synt hons George Majetich,' Hisaya Nishidie and Yong ZhangDepartment of Chemistry, The University of Georgia, Athens, Georgia, USA, 30602 Three trimethylenemethane dianion synthons showed upon the choice of catalyst employed. In 1979 Bates and co-workers showed that the dianion of isobutene 1 reacts with electrophiles to give functionalized open-chain compounds by first functionalizing one allylic anion and then adding an additional electrophiie to the remaining anion (c$ 1 -2, Scheme I).' When two electrophilic species I 13+ 21Scheme 1 are linked together, this dianion/dielectrophile strategy results in the formation of carbocyclic rings (cf 1-3).Unfortunately, reaction of the dianion 1 cannot be controlled to allow it to react successively with two different electrophiles, thus limiting this methodology. Allylstannanes and allylsilanes react with a wide variety of electrophiles, and these functionalities have been widely used as latent allylic nucleophiles for both inter- and intra- molecular carbon-carbon bond formation. Not surprisingly, these reactive functionalities have proven useful for numerous dianionic synthons of isobutene. For example, in 1983 Wuest and co-workers found that 2-methylidenepropane-1,3-diylbis-(triphenylstannane) 4 is slowly converted into 1,I, 1,5,5,5-a profound divergence of reactivity, based El,,AIBN,A Heal Ph3Sn SnPh3 4 oxallyl chkiride W(PPhJfinCI(33)n(.7 * 0A(3) R hexachloro-3-methylidenepentane5 in 65 yield via a radical 7 process eqn. (I).? Since then others have used related reagents for carbocyclic formation. Trost pioneered the use of trimethylenemethane equivalents, such as 6, for the one-step preparation of cyclopentane rings via 1,3-dipolar additions with electrophilic olefins eqn.(2).6Degl'Innocenti and co-workers showed that the allylbisstannane 7reacts with diacyl dichlorides to produce cyclic diones, independent of ring size {cf: 8 eqn. (3) and 12 eqn. (7)}.' Other workers have developed similar two- (3 + 31 step sequences differing only in the manner in which the various nucleophilic andlor electrophilic species are generated in situ.$*' Me3sY t Recently Keck and Ueno have found that bis-allylstannane reagents such as 4 react with standard electrophile~.~ 9 BuSnH (3oxoverall)$2-Trirnethylsilylrnethyl-rr-allylnickelhalides readily couple with alkyl nl.8halides to produce functionalized allyl~ilanes.~ Me? Me? R-X Me? R -Ni(COQp toluene X -CI. Br, I Rmorn tq. OAc 3omin NiBr pod Yields 3 + 31 r !l 10 11 13 + 41 10 (6) Me3Sn SnMe3 CI (65) ref. 7 0 7 12 0 Molander and Shubert have exploited mixed allylstannane,' allylsilane isobutene-based reagents for carbocyclic form- ation eqns. (5) and (6).In their studies, the allylic iodide 10 was treated with SnF, to generate a reactive allylstannane intermediate (cf 11) in situ, which then could be used for the preparation of five-, six-, seven-and/or eight-membered rings.'O During our study directed towards a synthesis of the linearly fused triquinane hirsutene we found that a trimethylallylsilane moiety reacts more rapidly under Lewis acid catalysis than the analogous methyldiphenylallylsilane.' This observation prompted us to prepare the mixed bifunctionalized reagents 13 and 14 on the premise that the differences in the reactivity of the functionalities present would allow us to control the order with which they react.$ Results and DiscussionF Reagents 13 and 14were prepared from 2-trimethylsilylmethyl- prop-2-en-1-01 (15)13as shown in eqn.(8) and Scheme 2, respectively.Reaction of the cuprate reagent derived from chloromethyldiphenylsilane l4 and iodide 10Is gave a 91yield of 3-methyldiphenylsilyl-2-C(trimethylsilyl)methylpropane 14. The preparation of 3-tributylstannyl-2-(trimethylsilyl)meth-10 14 Me3Sip 4 For rate constant comparing the reactivity of allylsilanes, silyl enol ethers and allylstannes, see ref. 12. 1 All yields are isolated yields. No attempt was made to optimize the transformations reported. J. CHEM. SOC. PERKIN TRANS. i 1995 S S Me3Si ?H Me3SI OLSMe Me3S! ?Me NaH, CSa Me1K Knefrom 151 15 16 17 ref. 16 t Me3Sf ?H Me3S/ Scheme 2 yllpropene 13 was less direct.11 Although reaction of the requisite cuprate reagent and the iodide 10 generated 13,its purification either chromatographically or by distillation was problematic.Fortunately, the reagent 13 could be prepared cleanly from either the dithiocarbamate 17 or the sulfide 18 (Scheme 2). Treatment of the alcohol 15 with sodium hydride and carbon disulfide, followed by the addition of iodomethane, produced the xanthate 16 which was thermally rearranged to 17.Conversion of this dithiocarbamate, or allylic sulfide 18, into the reagent 13 was achieved using a free radical process. Although less direct than the cuprate coupling, these alternative sequences allowed 13 to be prepared free of contaminants. We were confident that the differences in the reactivity of allylstannanes and allylsiianes would permit their differentiation in our bifunctional reagent.This conjecture proved to be valid. For example, trea'tment of mixed allylsilanejallylstannane 13 with fluoride ion resulted in the selective reaction of the allylsilane moiety (cf 19),since allylstannanes are inert under these conditions. In contrast, we observed that heating 13 at temperatures > 150 "Ccauses only the allylstannane moiety to react (cf 20).**This was not surprizing since allylstannanes are known to react at elevated temperatures,I6 whereas allysilanes are thermally stable.?? Me3Sj SnBu3 13 20 PhvBu3 OH 19 (9) Allylsilanes and allylstannanes both react with electrophiles on exposure to Lewis acid catalysts. We speculated that the more reactive nucleophilic functionality (the allylstannane) would react preferentially using a mild Lewis acid.Indeed, I( At first we made 3-trimethylsilyl-7-(trimethylstannyl)methylpro-pene by coupling the iodide 10 with (Me,Sn),CuI. In our hands, however, this product was difficult to purify, encouraging us to substitute the highly reactive trimethylstannyl moiety with a more stable tributylstannyl one. ** Extensive work showed that if reagent 13 was contaminated with organotin-by-products this condensation was not observed. tt Organostannanes also react under high pressure, see ref. 17. Our results suggest that reagent 13 should also exploit these experimental conditions. J. CHEM. SOC. PERKIN TRANS. I 1995 reaction of allylstannane/allylsilane 13with benzaldehyde in the presence of triethylaluminium, a weak Lewis acid, results in the selective reaction ofthe stannane moiety 13 -20, eqn.(lo). Me I SnBua Me3SII PhCHO, EIJAlK -78 +0°C 13 (42) 20 PhCHO. BFdtfl -78 +04: (57) SnBua 19 Stronger Lewis acids, such as titanium tetrachloride, stannous tetrachloride, iron trichloride, magnesium bromide, zinc chloride or trimethylsilyl triflate were also studied but gave unsatisfactory results. Inexplicably, the reaction of reagent 13 at low temperatures with a stoichiometric amount of boron trifluoride-diethyl ether resulted in the exclusive reaction of the allylsilane moiety (14 -19). The substrate 14 contains two allylsilane moieties, both of which will react with equal likelihood using fluoride ion catalysis but which we expected would demonstrate a Lewis acid dependency.This proved to be the case as treatment of 14 with trimethylaluminium resulted in the reaction of only the trimethylallylsilane unit cf: 21, eqn. (ll) leaving the less reactive methyldiphenylallylsilane unit for further use (i.e., 21 -22). Me3S SiPh2Me SiPhPMe PhCHO The selectivity demonstrated by these bifunctional reagents has considerable synthetic potential. For example, the use of these reagents for the formation of polycyclic systems by means of a tandem inter-Iintra-molecular strategy, as generalized in eqn. (1 2), is the focus of on-going work. Experimental General.-AIl reactions were run under an inert atmosphere of nitrogen and monitored by TLC analysis until the starting material was completely consumed.Unless otherwise indicated, all ethereal work-ups consisted of the following procedure: the reaction was quenched at room temperature with saturated aqueous ammonium chloride. The organic solvent was removed under reduced pressure on a rotary evaporator and the residue was taken up in diethyl ether, washed with brine and dried over anhydrous magnesium sulfate. Filtration, followed by concen- tration at reduced pressure on a rotary evaporator and at 1 Torr to constant weight, afforded a crude residue which was purified i M = Sn or Si by flash chromatography using NM silica gel 60 (230-400 mesh ASTM) and distilled reagent grade solvents. 'H and 13C NMR spectra were obtained on a Bruker 250 spectrometer at 250 MHz and at 62.7 MHz, respectively.Chemical shifts are reported relative of CDCI, as an internal standard; J values are recorded in Hz. Microanalysis was performed by Atlantic Microlab, Inc., Atlanta, GA. 3-Tributylsra~nyl-2-(trimethylsilyl)methyllpropene13.-(a) via Cuprate coupling. To tributyltin hydride (786 mm3,ff 2.83 mmol) in dry tetrahydrofuran (THF; 8 cm3) at 0 "C was added dropwise butyllithium (2.5 mol dm-3 in hexanes; 1.13 cm3, 2.83 mmol). The resulting mixture was stirred at 0 "C for 2 h, after which it was transferred (via a cannula) to a suspension of copper() cyanide (270 mg, 1.42 mmol) in dry THF (2 cm3) at 0 "C. After 30 min, the reaction mixture was diluted with dry THF (5 cm3), cooled to -10 OC, and treated with the iodide 10 in dry THF (3 cm3).The resulting mixture was stirred at -10 OC for 90 min after which it was quenched by being poured onto saturated aqueous ammonium chloride and saturated aqueous sodium carbonate (1 : 1; 8 cm3); it was then extracted with ether (3 x 25 cm3). The combined extracts were dried (MgSO,), filtered and concentrated. Purification of the residue by chromatography on silica gel (elution with hexanes) gave 13 (319 mg, 65) which was homogenous by TLC analysis (hexanes, R, 10 0.68, R, 13 0.87) (Found; C, 54.8; H, 10.3. CI9H,,SiSn requires C, 54.68; H, 10.14); dH250 MHz; CDCI, 0.04 9 H, s, (CH,),Si, 0.91 9 H, t, J 7, (CH,-CH2CH2CH,),, 1.20-1.78 20 H, m, (CH2CH2CH2CH3)3 and (CH,),SiCH,, 2.28 2 H, s, (CH3),SnCH2, 4.62 (1 H.s, HC=) and 4.72 (I H, s, HC=). (b) via Thedithiocarbamate route. The alcohol 15 (1.00 g, 6.93 mmol) was treated with sodium hydride (80; 229 mg, 7.62 mmol) dissolved in dry THF (15 cm3). Carbon sulfide (500 mm3, 8.32 mmol) was added to the mixture which was then stirred at 0 "C for 60 min. After this the mixture was treated with iodomethane (650 mm3, 10.40 mmol) and stirred for an additional 60 min at 0 "C. Standard ethereal work-up gave the crude xanthate (1.21 g; TLC analysis: hexane-ether, 10: 1, R, 15 0.21, RF 16 0.83) that was used without purification or characterization. The crude xanthate was dissolved in dry benzene (20 cm3) and the solution refluxed for 7 h. The reaction mixture was then cooled to room temperature, concentrated and chromato- graphed (elution with hexane-ether, 50: 1) to provide the dithiocarbamate 17 (I .27 g, 78) which was homogeneous by TLC analysis hexane-ether, 50: 1, R, 16 0.57, R, 17 0.401.The dithiocarbamate 17 (1.22 g, 5.18 mmol) was dissolved in toluene (20 cm3) and the solution heated to reflux. To the reaction mixture was added tributyltin hydride (1.41 dm3, 5.08 mmol) and azoisobutyronitrile (AIBN) (84 mg, 0.51 mmol) over a 30 rnin period. After the resulting mixture had been refluxed for 24 h it was evaporated under reduced pressure and the residue (2.59 g) was chromatographed on silica gel (elution hexanes, R, 17 0.18, R, 13 0.31) to give the reagent 13 (1.75 g, 81) which was identical with that prepared previously.(c) via The sulfide route. Ethanethiol (520 mm3, 7.01 mmol) was slowly added to butyllithium (2.5 mol drn-,; 3.0 cm3, 7.36 mmol) in THF (20 cm3) at 0 "C and the mixture then stirred for 30 min. The allylic iodide 10 was dissolved in dry THF (3 cm3) the solution added to the mixture over a 5-min period. The resulting mixture was stirred at 0 "C for 1 h and then warmed to room temperature over a 40-min period. Standard ethereal work-up, followed by chromatography (elution with hexanes), gave the sulfide 18 (1.03 g, 98) which was homogeneous by TLC analysis (hexanes, R, 10 0.74, R, 18 0.56); SH250 MHz; CDCl,, 0.03 9 H, s, (CH,),Si, 1.10 3 H, t, J 7, CH,(CH,), 1.70 2 H, s, (CH,),SiCH,, 2.22 (2 H, q, J 7, SCH,CH,), 3.10 (2 H, s, CHCH,S), 4.19 (1 H, s, HC=) and 4.36 (1 H, s, HG).The sulfide 18 (1.03 g, 5.47 mmol) was dissolved in toluene (30 cm3) and the resulting solution was heated to reflux. To the reaction mixture was added tributyltin hydride (1.49 cm3, 5.36 mmol) and AIBN (90 mg, 0.54 mmol) over a 30-min period. The resulting mixture was refluxed for 12 h after which it was evaporated under reduced pressure and the residue was chromatographed on silica gel (elution with hexanes) to give the reagent 13 (843 mg, 3773, identical with that previously described, 3-Methyldiphenylsilyl-2-(trimethylsilyl)niethyllpropene 14. -Phenyldimethylchlorosilane (3.50 g, 15.00 mmol) was added to finely cut lithium metal (250 mg, 36.00 mmol) suspended in dry THF (20 cm3). After being stirred for 90 rnin at -10 "C, the solution turned dark red. Continued vigorous stirring for 3 h produced a brownish solution which was transferred (via a cannula) to a suspension of copper(1) cyanide (600 mg, 6.70 mmol) in dry THF (5cm3) at 0 "C.After 30 rnin at -78 "C, the reaction mixture was allowed to warm to -10 "C. The iodide 10 (1.54 g, 6.70 mmol) in dry THF (5cm3) was added to it and the resulting mixture was stirred at -10 "C for 60 min. After this it was quenched by being poured onto a mixture of saturated aqueous ammonium chloride and saturated aqueous sodium carbonate (1 :I; 30 cm3) and extracted with ether (4 x 30 cm3 portions). The combined extracts were dried (MgSO,), filtered and concentrated.Purification of the residue by chromatography on silica gel (elution with hexanes) gave 14 (1.79 g, 91) which was homogeneous by TLC analysis (hexanes, RF 10 0.77, RF 14 0.61) (Found: C, 73.8; H, 8.7. CZ,H,,Si, requires C, 74.00; H, 8.69); 6,(250 MHz; CDC1,) 0.03 9 H. s, (CH,),Si, 0.66 3 H, s, CH,Si(C,H,),, 1.36 2 H, s, (CH3)$XH2, 2.09 2 H, s, CH,(C,H,),SiCH,, 4.45 (2 H, s, H,C=) and 7.35-7.65 lo H, m, (C6H5)J. Fluoride Ion-promoted Condensation of 13 with Benzalde- hyde.-To tetrabutylammonium fluoride trihydrate (3 13 mg, 1.20 mmol) which had been stored in uucuo for 30 rnin was added dry DMF (2 cm3) and a few activated 4 A molecular sieves. After 15 min, the solution was transferred to a reaction vessel containing 4 A molecular sieves (100 mg) and benz- aldehyde (55 mg, 0.90 mmol).The reagent 13 (417 mg, 1.00 mmol) in dry DMF (1 0 cm3) was added dropwise over 1 h using a syringe pump to the mixture which was then stirred at room temperature for 2 h and finally quenched with water. Standard ethereal work-up provided a crude residue that was purified by chromatography on silica gel (elution with hexanes-ether, 2 : 1) J. CHEM. SOC. PERKIN TRANS. I 1995 to afford the alcohol 19 (32.8 g, 73) which was homogeneous by TLC analysis (hexanes-ether, 1 : 1, R, PhCHO 0.79, R, 19 0.32); vm,,(film)/cm-l 3350-3200 (OH); 6,(250 MHz; CDC1,)0.929 H, t,J7,(CH2CH*CHZCH3)3, 1.20-1.7818 H, m, (CH,CH,CH,CH,),, 2.40-2.60 (1 H, m, CHCH,-C=), 2.42 (2 H, s, CH,SnR,), 3.72 (1 H, br s, OH), 4.81-4.90 (1 H, m, C~HSCHOH),5.00 (1 H, s, CH=), 5.20 (1 H, s, CH=) and 7.30- 7.50 (5 H, m, C,H,).Heat-promoted Condensation of 13 with Benzaldehyde. -To a solution of benzaldehyde (37 mg; 0.34 mmol) in dryp-xylene (3 cm3) was added the reagent 13 (100 mg, 0.34 mmol). After being refluxed for 24 h (1 50 "C), the reaction mixture was cooled to O"C, diluted with ether (25 cm3) and washed with saturated aqueous ammonium chloride. Standard ethereal work-up gave a crude residue which was purified by chromatography on silica gel (elution with hexanesther, 2 :1) to give the adduct 20 (49 mg, 61) which was homogeneous by TLC analysis (hexanes-ether, 1:1, R, PhCHO 0.79, R, 20 0.35); v,,,(film)/cm-' 3400-3150 (OH);6,(250 MHz; CDCI,) 0.07 9 H, s, (CH,),Si, 1.53-1.65 2 H, m, CH,Si(CH,),, 2.25-2.50(3 H, m, CH,C=and OH),4.70- 4.90 (3 H, m, CH,= and CHOH) and 7.20-7.50 (5 H, m, C,H,).Triethylaluminium-catalysedCondensation of 13 with Benz- aldehyde.-To a solution of benzaldehyde (1 59 mg, 1 .SO mmol) dry methylene dichloride (7 cm3) was added Et,Al (1.9 mol drn-,, 2.50 mmol) at -78 "C. After being stirred for 4 h at -78 "C, the reaction mixture was warmed to 0 OC and stirred at this temperature for 90 min. After this it was quenched with saturated aqueous ammonium chloride (2 cm3) and treated to a standard ethereal work-up to give a crude residue. This was purified by chromatography on silica gel (elution with hexanes- ether, 3 :1) to give the adduct 20 (24 mg, 42), identical with that prepared previously. BF,-Et,O-Catalysed Condensation of 13 with Benzalde-hyde.-To a solution of benzaldehyde (171 mg, 1.61 mmol) in dry methylene dichloride (7 cm3) was added BF,.Et,O (330 mm3, 2.8 mmol) at -78 OC.After being stirred for 3 h at -78 "C, the reaction mixture was quenched with saturated aqueous sodium hydrogen carbonate (2 cm3) and subjected to a standard ethereal work-up to give a crude residue. This was purified by chromatography on silica gel (elution with hexanes- ether, 3:l) to give the adduct 19 (35 mg, 57) which was identical with that prepared previously. Et,AlCI-Catalysed Condensation of 14 and Benza1dehyde.- To a solution of benzaldehyde (444 mg, 4.18 mmol) and 14 (1.13 g, 3.48 mmol) in dry methylene dichloride (20 cm3) at -78 OC was added Et,AICI (1.93 cm3, 3.48 mmol).After being stirred for 1 h at -78 "C, the reaction mixture was quenched with saturated aqueous ammonium chloride (5 cm3) and subjected to a standard ethereal work-up to give a crude residue. This was purified by chromatography on silica gel (elution with hexanesxther, 3 : I) to give the alcohol 21 (522 mg, 42) which was homogeneous by TLC analysis (hexanes-ether, 3: 1, R, PhCHO 0.56; R, 21 0.36); 6,(250 MHz; CDCI,) 0.72 3 H, S, CH,Si(C,H,),, 2.20-2.50 (4 H, m, CH,CCH,), 4.77 (2 H, br s, CH,=), 7.20-7.70 lS H, m, (C6H,), and C6H5CH. Acerylation of 21.-To the alcohol 21 (522 mg, 1.46 mmol) dissolved in pyridine (2 cm3) was added acetic anhydride (1 cm3).The resulting mixture was stirred for 13 h at room temperature and then diluted with ether (50 cm3). The organic phase was washed with saturated aqueous copper(n) sulfate (3 x 50 cm3) and brine (15 cm3), dried (MgSO,), filtered and concentrated. The crude residue was chromatographed on silica gel (elution with hexanes*ther, 3 : 1) to furnish the acetate 22 J. CHEM SOC. PERKIN TRANS. I 1995 (558 mg, 95), which was homogeneous by TLC analysis (hexanes-ether, 3:1, R, 21 0.36; RF 22 0.69); 6,250 MHz; CDCI, 0.72 3 H, s, CH,Si(C,H,),, 2.12 (3 H, s, CH,CO), 3 I. Fleming, J. Dunogues and R. Smithers, Org. React., 1989,37, 57. 2.20-2.5514H,m,CH,CCH,),4.77(2H,brs,CH2=),5.92-6.054 S.Chandrasekhar, S.Latour, J.D. Wuest and B. Zacharie, J. Org. 2 For leading examples of allylstannane chemistry see: (a) Y. Yamamoto, Acc. Chem. Rex, 1987, 20, 243; (b)G. E. Keck and J. B. Yates, J. Am. Chem. Soc., 1982,104,5829. (1 H, m, CHOAc) and 7.20-7.75 I5 H, m, (C,H,), and C,H,CH. Fluoride Ion-promoted Condensation of 21 and Benzalde-hyde.-To tetrabutylammonium fluoride trihydrate (4.35mg, 1.67 mmol) which had been stored in vacuo for 30 min was added dry DMF (3 cm3) and a few activated 4 A molecular sieves. After 15 min, the solution was transferred to a reaction vessel containing 4 A molecular sieves (100 mg) and benz- aldehyde (1 33 mg, 1.25 mmol). A solution of acetate 22 (558 mg, 1.39 mmol) in dry DMF (10 cm3) was added dropwise to this solution over 1 h using a syringe pump.The resulting mixture was stirred at room temperature for 3 h and then quenched with water. Standard ethereal work-up provided a crude residue that was purified by chromatography on silica gel (elution with hexanes+ther, 3:l) to afford the alcohol 23 (375 mg, 87) which was homogeneous by TLC analysis hexanes
机译:J. CHEM. SOC. PERKIN TRANS. t 1995 Selective Elect rophi Iic Add itions of Mixed Bifunct iona Iized Trimet hylenemet hane Dian ion Synt hons George Majetich,' Hisaya Nishidie and Yong Zhang佐治亚大学化学系,Athens,Georgia,USA,30602 三种三亚甲基甲烷二阴离子合成子在选择所采用的催化剂时显示。1979年,Bates及其同事发现,异丁烯1的二阴离子与亲电试剂反应,通过首先官能化一个烯丙基阴离子,然后在剩余的阴离子中添加一个额外的电离子,从而产生功能化的开链化合物(c$ 1 -2,方案I)。当两种亲电物质 I 13+ 21Scheme 1 连接在一起时,这种亲电介电策略导致碳环的形成 (cf 1-3)。不幸的是,不能控制二阴离子 1 的反应以使其与两种不同的亲电试剂连续反应,从而限制了这种方法。烯丙基锡烷和烯丙基硅烷与多种亲电试剂反应,这些官能团已被广泛用作分子间和分子内碳-碳键形成的潜在烯丙基亲核试剂。毫不奇怪,这些反应性官能团已被证明对许多异丁烯的双阴离子合成子有用。例如,1983年Wuest及其同事发现,2-亚甲基丙烷-1,3-二基双-(三苯基锡烷)4缓慢地转化为1,I,1,5,5,5-反应性的深刻分歧,基于El,,AIBN,A Heal Ph3Sn SnPh3 4 oxallyl chkiride W(PPhJfinCI(33%)n(.7 * 0A(3) R 六氯-3-亚甲基戊烷5通过自由基7工艺以65%的收率[方程(I)].?从那时起,其他人使用相关的试剂进行碳环形成。Trost率先使用三亚甲基甲烷当量,如6,通过与亲电烯烃的1,3-偶极加成一步法制备环戊烷环[方程(2)].6Degl'Innocenti及其同事表明,烯丙基二锡烷7与二酰基氯化物反应产生环状二酮,与环尺寸无关{cf:8 [方程(3)]和12 [方程(7)]}。其他工作者也开发了类似的两步(3 + 31步序列,区别仅在于各种亲核Andlor亲电物质原位生成的方式.$*' Me3sY t 最近,Keck 和 Ueno 发现双烯丙基锡烷试剂(如 4 与标准亲电试剂反应~.~ 9 BuSnH (3oxoverall)$2-三烯基硅基乙基-rr-烯丙基镍卤化物容易与烷基 nl.8卤化物偶联产生官能化的烯丙基~乙烷.~ Me?[我?R-X我?R-Ni(辅酶QQp甲苯X-CI.Br,我 Rmorn tq。OAc 3omin NiBr pod 产量 [3 + 31 r !l 10 11 13 + 41 10 (6) Me3Sn, SnMe3 CI (65%) 文献。7 0 7 12 0 Molander 和 Shubert 利用混合烯丙基锡烷、烯丙基硅烷基异丁烯试剂进行碳环形成 [方程 (5) 和 (6)]。在他们的研究中,烯丙基碘化物10用SnF处理,以原位生成反应性烯丙基锡烷中间体(cf 11),然后可用于制备五元、六元、七元和/或八元环。这一观察结果促使我们制备混合双官能团试剂13和14,前提是存在官能团的反应性差异将使我们能够控制它们的反应顺序。 结果和讨论F试剂13和14由2-三甲基硅基甲基-丙-2-烯-1-01(15)13制备,如方程(8)和方案2所示, 分别。由氯甲基二苯基硅烷 l4 和碘化物 10Is 衍生的铜酸盐试剂反应得到 3-甲基二苯基硅烷基-2-C(三甲基硅基)甲基]丙烷 14 的收率为 91%。3-三丁基锡烷基-2-[(三甲基硅基)甲基-10的制备 14 Me3Sip 4 关于烯丙基硅烷、甲硅烷基烯醇醚和烯丙基锡烷的反应性比较的速率常数,参见参考文献 12。 1 所有产量均为分离产量。未尝试优化报告的转换。J. CHEM. SOC. PERKIN 译.i 1995 S S Me3Si ?H Me3SI OLSMe Me3S! ?&Me NaH, CSa Me1K Kne%from 151 15 16 17 ref. 16 t Me3Sf ?H Me3S/方案2的基丙烯13不太直接.11尽管必需的铜酸盐试剂与碘化物10的反应生成了13,但其色谱或蒸馏纯化是有问题的。幸运的是,试剂13可以由二硫代氨基甲酸酯17或硫化物18(方案2)干净地制备。用氢化钠和二硫化碳处理醇15,然后加入碘甲烷,产生黄原酸盐16,黄原酸盐16被热重排为17.使用自由基工艺将这种二硫代氨基甲酸酯或烯丙基硫化物18转化为试剂13。虽然不如铜酸盐偶联直接,但这些替代序列允许制备 13 个不含污染物。我们相信,烯丙基锡烷和烯丙基甾烷的反应性差异将允许它们在我们的双功能试剂中分化。这个猜想被证明是有效的。例如,将烯丙基硅烷Jallyl锡烷13与氟离子混合处理导致烯丙基硅烷部分的选择性反应(cf 19),因为烯丙基锡烷在这些条件下是惰性的。相比之下,我们观察到在> 150 的温度下加热 13 “只会导致烯丙基锡烷部分发生反应(参见 20).**这并不奇怪,因为已知烯丙基锡烷在高温下反应,I6 而烯丙硅烷具有热稳定性。??Me3Sj SnBu3 13 20 PhvBu3 OH 19 (9) 烯丙基硅烷和烯丙基锡烷在暴露于路易斯酸催化剂时均与亲电试剂反应。我们推测,更具反应性的亲核官能团(烯丙基锡烷)将优先使用温和的路易斯酸进行反应。事实上,I( 首先,我们通过将碘化物 10 与 (Me,Sn)、CuI 偶联来制备 3-三甲基硅基-7-[(三甲基锡烷基)甲基]丙烯。然而,在我们手中,这种产品很难纯化,这促使我们用更稳定的三丁基锡烷基部分代替高反应性的三甲基锡烷基部分。** 大量研究表明,如果试剂 13 被有机锡副产物污染,则不会观察到这种冷凝。tt 有机甾烷也在高压下反应,参见参考文献 17。我们的结果表明,试剂 13 也应该利用这些实验条件。J. CHEM. SOC. PERKIN 译.I 1995 烯丙基锡烷/烯丙基硅烷 13 在三乙基铝(一种弱路易斯酸)存在下与苯甲醛的反应导致锡部分的选择性反应 [13 -20, eqn.(lo)]。Me&I SnBua Me3SII PhCHO, EIJAlK -78% +0°C 13 (42%) 20 PhCHO.BFdtfl -78% +04: (57%) SnBua 19 还研究了更强的路易斯酸,如四氯化钛、四氯化亚锡、三氯化铁、溴化镁、氯化锌或三甲基硅烷基三氟甲磺酸酯,但结果不令人满意。令人费解的是,试剂 13 在低温下与化学计量的三氟化硼-乙醚反应导致烯丙基硅烷部分 (14 -19) 的排他性反应。底物 14 含有两个烯丙基硅烷部分,它们都将使用氟离子催化以相同的可能性发生反应,但我们预计这将表现出路易斯酸依赖性。事实证明,用三甲基铝处理14导致仅三甲基烯丙基硅烷单元[参见:21,方程(ll)]的反应,而反应性较低的甲基二苯基烯丙基硅烷单元则供进一步使用(即21-22)。Me3S] SiPh2Me SiPhPMe PhCHO 这些双功能试剂所证明的选择性具有相当大的合成潜力。例如,使用这些试剂通过串联分子间策略形成多环体系,如方程(1 2)中所概括的那样,是正在进行的工作的重点。实验 一般-AIl 反应在氮气惰性气氛下进行,并通过 TLC 分析进行监测,直到起始材料完全消耗殆尽。除非另有说明,否则所有空灵的检查都包括以下程序:在室温下用饱和氯化铵水溶液淬灭反应。在旋转蒸发器上减压除去有机溶剂,残留物用乙醚吸收,用盐水洗涤,用无水硫酸镁干燥。过滤,然后在旋转蒸发器上减压浓缩,并以 1 Torr 升至恒重,得到粗残留物,使用 NM 硅胶 60(230-400 目 ASTM)和蒸馏试剂级溶剂通过快速色谱法纯化 i M = Sn 或 Si。'H 和 13C NMR 谱图分别在 250 MHz 和 62.7 MHz 的 Bruker 250 波谱仪上获得。作为内部标准,相对于 CDCI 报告化学位移;J值以Hz为单位记录。 微量分析由佐治亚州亚特兰大的Atlantic Microlab,Inc.进行。 3-三丁基-2-[(三甲基硅基)甲基丙烯13.-(a)通过铜酸盐偶联。向氢化三丁基锡(786 mm3,ff 2.83 mmol)在干燥的四氢呋喃(THF;8 cm3)中在0“C下滴加丁基锂(2.5 mol dm-3的己烷溶液;1.13 cm3,2.83 mmol)。将所得混合物在0“C下搅拌2小时,然后将其(通过套管)转移到氰化铜(270mg,1.42mmol)悬浮液中,在0”C下在干燥的THF(2cm3)中。30分钟后,将反应混合物用干燥的THF(5cm3)稀释,冷却至-10OC,并用碘化物10在干燥的THF(3cm3)中处理。将所得混合物在-10 OC下搅拌90分钟,然后倒入饱和氯化铵水溶液和饱和碳酸钠水溶液(1:1;8cm3)淬火;然后用乙醚(3 x 25 cm3)提取。将合并的提取物干燥(MgSO),过滤并浓缩。通过硅胶色谱法纯化残留物(用己烷洗脱),得到13(319mg,65%),通过TLC分析均质(己烷,R,10 0.68,R,13,0.87)(发现;C,54.8;H,10.3。CI9H,,SiSn 需要 C, 54.68;H,10.14%);dH[250 MHz;CDCI0.04 [9 H, s, (CH,),Si], 0.91 [9 H, t, J 7, (CH,-CH2CH2CH,),], 1.20-1.78 [20 H, m, (CH2CH2CH2CH3)3 and (CH,),SiCH,], 2.28 [2 H, s, (CH3),SnCH2], 4.62 (1 H.s, HC=) 和 4.72 (I H, s, HC=)。(b) 通过二硫代氨基甲酸酯路线。将醇15(1.00g,6.93mmol)用氢化钠(80%;229mg,7.62mmol)溶于干燥THF(15cm3)中处理。将硫化碳(500mm3,8.32mmol)加入到混合物中,然后在0“C下搅拌60分钟。此后,用碘甲烷(650mm3,10.40mmol)处理混合物,并在0“C下再搅拌60分钟。TLC分析:己烷醚,10:1,R,15 0.21,RF 16 0.83),未经纯化或表征即可使用。将粗黄原酸盐溶于干燥苯(20 cm3)中,溶液回流7 h。然后将反应混合物冷却至室温,浓缩并进行色谱图(用己烷醚洗脱,50:1),得到二硫代氨基甲酸酯17(I .27 g,78%),通过TLC分析[己烷醚,50 : 1,R,16 0.57,R,17 0.401.将二硫代氨基甲酸酯17(1.22 g,5.18 mmol)溶于甲苯(20 cm3)中,溶液加热回流。在30rnin的时间内向反应混合物中加入三丁基氢化锡(1.41 dm3,5.08 mmol)和偶氮异丁腈(AIBN)(84mg,0.51 mmol)。将所得混合物回流24小时后,减压蒸发,并将残留物(2.59g)在硅胶(洗脱己烷,R,17,0.18,R,13,0.31)上色谱,得到试剂13(1.75g,81%),与先前制备的试剂相同。(c) 通过硫化物路线。将乙硫醇(520 mm3,7.01 mmol)缓慢加入到丁基锂(2.5 mol drn-,;3.0 cm3,7.36 mmol)的THF(20 cm3)中,在0“C下搅拌混合物30分钟。将烯丙基碘化物10溶于干燥的THF(3cm3)溶液中,在5分钟内加入到混合物中。将所得混合物在0“C下搅拌1小时,然后在40分钟内加热至室温。标准空灵检查,然后进行色谱分析(用己烷洗脱),得到硫化物 18(1.03 g,98%),通过 TLC 分析是均匀的(己烷,R,10 0.74,R,18 0.56);SH[250兆赫;CDCl,],0.03 [9 H, s, (CH,),Si],1.10 [3 H, t, J 7, CH,(CH,)],1.70 [2 H, s, (CH,),SiCH,], 2.22 (2 H, q, J 7, SCH,CH,CH,), 3.10 (2 H, s, CHCH,S), 4.19 (1 H, s, HC=) 和 4.36 (1 H, s, HG)。将硫化物18(1.03g,5.47mmol)溶于甲苯(30cm3)中,并将所得溶液加热回流。在30分钟内向反应混合物中加入三丁基氢化锡(1.49cm3,5.36mmol)和AIBN(90mg,0.54mmol)。将所得混合物回流12小时,然后在减压下蒸发,并将残留物在硅胶上色谱(用己烷洗脱),得到试剂13(843mg,3773,与先前描述的3-甲基二苯基硅基-2-[(三甲基硅基)尼乙基丙烯14相同。 -苯基二甲基氯硅烷(3.50g,15.00mmol)加入到细切的锂金属(250mg, 36.00 mmol)悬浮在干燥的THF(20 cm3)中。在-10“C下搅拌90rnin后,溶液变为暗红色。继续剧烈搅拌3小时,产生褐色溶液,将其(通过套管)转移到氰化铜(1)悬浮液(600mg,6.70mmol)中,在干燥的THF(5cm3)中,在0“C.在-78”C下30rnin后,使反应混合物升温至-10“C。将碘化物10(1.54g,6.70mmol)在干燥的THF(5cm3)中加入其中,并将所得混合物在-10“C下搅拌60分钟。之后,将其倒入饱和氯化铵水溶液和饱和碳酸钠水溶液(1:I;30 cm3)的混合物上,并用乙醚(4×30cm3部分)萃取。将合并的提取物干燥(MgSO),过滤并浓缩。通过硅胶色谱法纯化残留物(用己烷洗脱)得到14(1.79g,91%),通过TLC分析均匀(己烷,RF 10 0.77,RF 14 0.61)(发现:C,73.8;H,8.7。CZ,H,,Si,需要 C,74.00;H,8.69%);6,(250兆赫;CDC1,) 0.03 [9 H. s, (CH,),Si], 0.66 [3 H, s, CH,Si(C,H,),], 1.36 [2 H, s, (CH3)$XH 2], 2.09 [2 H, s, CH,(C,H,),SiCH,], 4.45 (2 H, s, H,C=) 和 7.35-7.65 [lo H, m, (C6H5)J. 氟化物离子促进 13 与苯甲醛-氢缩合-四丁基氟化铵三水合物 (3 13 mg, 1.20 mmol) 已在 uucuo 中储存了 30 rnin 加入干燥的 DMF (2 cm3) 和少量活化的 4 A 分子筛。15分钟后,将溶液转移到含有4A分子筛(100mg)和苯甲醛(55mg,0.90mmol)的反应容器中。使用注射泵将干燥DMF(1 0cm3)中的试剂13(417mg,1.00mmol)滴加到混合物中1 h,然后在室温下搅拌2 h,最后用水淬灭。标准空灵检查提供了粗残留物,通过硅胶上的色谱法纯化(用己烷醚洗脱,2 : 1) J. CHEM. SOC. PERKIN TRANS.I 1995年得到的醇19(32.8克,73%),通过TLC分析是均相的(己烷醚,1:1,R,PhCHO 0.79,R,19 0.32);vm,,(胶片)/cm-l 3350-3200 (OH);6,(250兆赫;CDC1,)0.92[9 H, t,J7,(CH2CH*CHZCH3)3], 1.20-1.78[18 H, m, (CH,CH,CH,CH,CH,),], 2.40-2.60 (1 H, m, CHCH,-C=), 2.42 (2 H, s, CH,SnR,), 3.72 (1 H, br s, OH), 4.81-4.90 (1 H, m, C~HSCHOH),5.00 (1 H, s, CH=), 5.20 (1 H, s, CH=) 和 7.30- 7.50 (5 H, m,C,H,)。13与苯甲醛的热促进缩合。-向苯甲醛(37mg;0.34mmol)在dryp-二甲苯(3cm3)溶液中加入试剂13(100mg,0.34mmol)。回流24小时(1 50“C)后,将反应混合物冷却至O”C,用乙醚(25 cm3)稀释并用饱和氯化铵水溶液洗涤。标准空灵检查得到粗残留物,通过硅胶色谱法纯化(用己烷%ther,2 : 1洗脱),得到加合物20(49mg,61%),通过TLC分析均一(己烷-醚,1:1,R,PhCHO 0.79,R,20 0.35);v,,,(薄膜)/cm-' 3400-3150 (OH);6,(250兆赫;CDCI,) 0.07 [9 H, s, (CH,),Si], 1.53-1.65 [2 H, m, CH,Si(CH,),], 2.25-2.50(3 H, m, CH,C=和OH),4.70- 4.90 (3 H, m, CH,= 和 CHOH) 和 7.20-7.50 (5 H, m, C,H,)。三乙基铝催化13与苯甲醛缩合-苯甲醛溶液(1 59mg,1 .SO mmol)在-78“C下加入干燥的二氯甲烷(7 cm3)Et,Al(1.9 mol drn-,, 2.50 mmol)。在-78“C下搅拌4小时后,将反应混合物加热至0OC并在该温度下搅拌90分钟。之后,用饱和氯化铵水溶液(2 cm3)淬灭,并经过标准的空灵处理,得到粗残留物。通过硅胶上的色谱法纯化(用己烷-乙醚洗脱,3 :1),得到加合物20(24mg,42%),与先前制备的加合物相同。BF,-Et,O-催化13与苯甲醛-羟基缩合--苯甲醛(171mg,1.61mmol)在干燥的二氯甲烷(7 cm3)中加入BF,。Et,O (330 mm3, 2.8 mmol) 在 -78 OC 时。在-78“C下搅拌3小时后,将反应混合物用饱和碳酸氢钠水溶液(2cm3)淬灭,并进行标准的空灵处理,得到粗残留物。通过硅胶上的色谱法纯化(用己烷-乙醚洗脱,3:l),得到加合物19(35mg,57%),与先前制备的加合物相同。将14和苯并1甲醛的AlCI催化缩合-加入到苯甲醛(444mg,4.18mmol)和14(1.13g,3.48mmol)在干燥的二氯甲烷(20cm3)中,在-78 OC下加入Et,AICI(1.93 cm3,3.48 mmol)。在-78“C下搅拌1小时后,将反应混合物用饱和氯化铵水溶液(5cm3)淬灭,并进行标准的空灵处理,得到粗残留物。通过硅胶上的色谱法纯化(用己烷xther洗脱,3:I),得到醇21(522mg,42%),通过TLC分析均匀(己烷-醚,3:1,R,PhCHO 0.56;R, 21 0.36);6,(250兆赫;CDCI,) 0.72 [3 H, S, CH,Si(C,H,),], 2.20-2.50 (4 H, m, CH,CCH,), 4.77 (2 H, br s, CH,=), 7.20-7.70 [lS H, m, (C6H,) 和 C6H5CH]。将21-醇21(522mg,1.46mmol)溶于吡啶(2 cm3)中,向乙酸酐(1 cm3)中反应。将所得混合物在室温下搅拌13小时,然后用乙醚(50cm 3)稀释。有机相用饱和硫酸铜(n)水溶液(3×50 cm3)和盐水(15 cm3)洗涤,干燥(MgSO,),过滤和浓缩。将粗残留物在硅胶上色谱(用己烷洗脱*ther,3 : 1),以提供乙酸盐 22 J. CHEM SOC. PERKIN TRANS.I 1995 (558 mg, 95%),通过TLC分析是均相的(己烷醚,3:1,R,21 0.36;射频 22 0.69);6,[250兆赫;CDCI,] 0.72 [3 H, s, CH,Si(C,H,),], 2.12 (3 H, s, CH,CO), 3 I. Fleming, J. Dunogues and R. Smithers, Org. React., 1989,37, 57.2.20-2.5514H,m,CH,CCH,),4.77(2H,brs,CH2=),5.92-6.054 S.Chandrasekhar, S.Latour, J.D. Wuest and B. Zacharie, J. Org. 2 烯丙基锡烷化学的主要例子见: (a) Y. Yamamoto, Acc. Chem. Rex, 1987, 20, 243;(b)G. E. Keck 和 J. B. Yates, J. Am. Chem. Soc., 1982,104,5829.(1 H, m, CHOAc) 和 7.20-7.75 [I5 H, m, (C,H,) 和 C,H,CH]。将氟离子促进的21和苯甲醚缩合成四丁基氟化铵三水合物(4.35mg,1.67mmol),将其真空储存30分钟,加入干燥的DMF(3cm3)和少量活化的4A分子筛。15分钟后,将溶液转移到含有4A分子筛(100mg)和苯甲醛(1 33mg,1.25mmol)的反应容器中。使用注射泵将乙酸盐22(558mg,1.39mmol)在干燥DMF(10cm3)中的溶液滴加到该溶液中超过1小时。将所得混合物在室温下搅拌3小时,然后用水淬灭。标准空灵检查提供了粗残留物,通过硅胶上的色谱法纯化(用己烷+ther,3:l洗脱),得到醇23(375mg,87%),通过TLC分析[己烷

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号