首页> 外文期刊>Proceedings of the Institution of Mechanical Engineers, Part A. Journal of power and energy >Computation of unsteady flow through steam turbine blade rows at partial admission
【24h】

Computation of unsteady flow through steam turbine blade rows at partial admission

机译:Computation of unsteady flow through steam turbine blade rows at partial admission

获取原文
获取原文并翻译 | 示例
           

摘要

Partial admission in the steam turbine is associated with strong unsteady flow effects on aerodynamic performance. This paper presents a first-of-its-kind computational study of the problem. The unsteady flow field in multiple blade passages andmultiple blade rows is governed by the quasi three-dimensional unsteady Navier-Stokes equations, closed by a mixing-length turbulence model. The partial admission is introduced by blocking one segmental arc (or several segmental arcs) of the inlet guidevane of the first stage. The flow equations are solved by using a time-dependent finite volume method.The calculated unsteady force on rotor blades for a turbine stage at partial admission compares well with the corresponding experimental data. The present results show that a cyclic pumping and sucking phenomenon occurs in the rotor blade row of the first stage, resulting in large unsteady loading and marked mixing loss. For a single stage at a given admission rate, a blocking arrangement with two flow segments is shown to be much more detrimental than one arc of admission, because of the extra mixingloss. The results for a two-stage case, however, suggest that the decaying rate of circumferential non-uniformities could be far more important for performance. For this reason, an enhanced mixing loss in the first stage might be beneficial to the overall efficiency of a multistage turbine.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号