首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Preparation and benzoylation of 3-hydroxy-2,3,5,5-tetramethyl-1-pyrroline 1-oxide (3-hydroxy-2,3,5,5-tetramethyl-4,5-dihydro-3H-pyrrole 1-oxide)
【24h】

Preparation and benzoylation of 3-hydroxy-2,3,5,5-tetramethyl-1-pyrroline 1-oxide (3-hydroxy-2,3,5,5-tetramethyl-4,5-dihydro-3H-pyrrole 1-oxide)

机译:3-羟基-2,3,5,5-四甲基-1-吡咯啉-1-氧化物(3-羟基-2,3,5,5-四甲基-4,5-二氢-3H-吡咯-1-氧化物)的制备及苯甲酰化

获取原文
获取外文期刊封面目录资料

摘要

J. CHEM. SOC. PERKIN TRANS. 1 1995 Preparation and Benzoylation of 3-Hydroxy-2,3,5,5-tetramethyl-l -pyrroline 1-Oxide (3-Hydroxy-2,3,5,5 -tetramethyI-4,5-dihydro-3H-pyrroIe 1-Oxide)t,' Neil J. Gibson,8 Alexander R. Forrester"raand Charles Brownb a Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB9 2UE, UK'Smith-Kline Beecham Ltd., The Frythe, Welwyn, Herts A16 SAR. UK ~~ ~ ~ ~ ~ ~ ~ Treatment of 2,3,5,5-tetramethyl-3-hydroxy-l -pyrroline 1-oxide 6, prepared from butanone in six steps, with benzoyl chloride under Schotten-Baumann conditions leads to an unprecedented dimerisation to give a spiro, tricyclic N-benzoyloxypyrrolidirie in good yield. The acylation of nitrones has been widely studied.'-' Nitrones lacking a proton p to the nitronyl carbon usually undergo 0-iii,iv MMe e d o acylation followed by a 1,2 migration of the acyloxy group to L-4f-give an 1-acyloxy imine which undergoes acidolysis resulting in NO2 Me the formation of an amide.2 In the case of nitrones with a proton, 0 acylation is usually followed by the 1,3 hetero-Cope 1 migration of the acyloxy group to give (3-acyloxy imine~.~-~ Aldo I-pyrroline 1-oxides give 3-acyloxy 1-pyrrolines when treated with acid anhydride^,^ acid chlorides4 and chloro-formates,' During our studies' of the preparation of l-pyrro-line I-oxides bearing an electrophilic substituent at C-3, suit-able to act as spin traps for the superoxide radical anion, we prepared the 3-hydroxy-1-pyrroline 1-oxide 6 which was treated with benzoyl chloride and pyridine in order to effect esterification.The desired putative ester, 3-benzoyloxy-2,3,5,5-tetramethyl-I-pyrroline I-oxide 7 was not expected to be a useful spin trap for superoxide since it lacks a proton Q to the nitronyl carbon and all spin adducts would give ESR spectra which were simple triplets as is observed for TMPO 16.6 However, it was intended to establish the principle that a 1-pyrroline 1 -oxide with an electrophilic group at C-3 such as 7 could spin trap superoxide and subsequently 'cap' the hydroperoxy functionality of the resulting adduct via an intramolecular transesterification. 3-Hydroxy-2,3,5,5-tetramethyl-l-pyrrolineResults and Discussion 1-oxide was pre-pared from butanone according to Scheme 1. Butanone was treated with aqueous, basic paraformaldehyde to give the hydroxymethyl aldol adduct which, although not isolated, was then dehydrated with polyphosphoric acidmethod of Cook and3-methylbut-3-en-2-one 1 according to the and copper to give Waring.' The z,P-unsaturated ketone 1underwent the Michael addition of 2-nitropropane to give the y-nitro ketone 2.When 2 was treated with concentrated perchloric acid and acetic anhydride the enol acetate 3 was formed slowly. The extent of reaction was readily monitored by observing the diminution of the absorbance of the carbonyl stretch of the ketone at 1720cm with the simultaneous increase in the carbonyl stretch of the enol acetate at 1750 cm-'. The enol acetate 3 was treated with m-chloroperbenzoic acid (m-CPBA) in dichloromethane to afford the acetoxy epoxide 4, treatment ofwhich with mineral acid in refluxing ethanol afforded the 3-hydroxyhexan-2-one 5.Reduction of the y-nitro ketone with zinc dust and aqueous ammonium chloride afforded the 3-hydroxy-1-pyrroline 1-oxide 6 in good yield. t Although in the earlier sections of this paper the compounds are, for convenience, described as 1-pyrrolines, the IUPAC-approved names are given in the Experimental section. /* Me-.,,+,, Me A O A Me NO:, Me NO:, Me 3 Meo Me NO2 Me 5 viii Me : Me y0-y6Me OH Me: I 0-N Me ';Jtea+$ =Me Me 0-8 7 Scheme 1 i, (CH,O),, NaOH,,; ii, H,PO,, Cu, reflux; iii. Me,CHNO,, Triton BO, THF; iv, HCI,; v, Ac,O, CCI,, HClO,(conc.); vi, m-CPBA; vii, 2 rnol dm? HCI.EtOH, reflux; viii, Zn, NHbCI. THF. H,O; ix, Py, PhCoC' equiv,). The IR spectrum of the hydroxy nitrone 6 shows strong absorptions at 3129 (hydroxy) and 1617 cm-' (C=N).The lH NMR spectrum shows four methyl groups including one with a chemical shift of 1.97 ppm which is consistent with a 2-methyl- I-pyrroline I-oxide.' The 4-CH2 protons give an AB quartet (JI2 Hz) and there is a broad, exchangeable signal arising from the hydroxy proton. The I3C NMR spectrum shows only seven signals due to equivalence of two of the methyl groups. C-2 has a chemical shift of 147.4 ppm which is characteristic of a 2- methyl-I-pyrroline I-oxide' while C-3 has a chemical shift of 72.34ppm which is consistent with a quaternary carbon bonded to a hydroxy group.Treatment of the 3-hydroxy-1-pyrroline 1-oxide 6 with benzoyl chloride (1 equiv.) and pyridine in dichloromethane failed to induce simple esterification of the hydroxy func- tionality to give the ester 7, but, instead, the spiro tricyclic N- benzoyloxyamine 8 was isolated in good yield. The latter shows strong absorption in the IR region at 3397 (hydroxy) and 1746 and 1738 cm-' ((24). Apart from a weak band at 1601 cm-' arising from the 'ring breathing' stretch of the phenyl C==C bonds there is no absorbance in the range 1500-1700 cm-' which demonstrates the absence of C=N bonds. The 'H NMR spectrum of 8 shows seven methyl reson- ances, signals from six other aliphatic protons comprising three AB spin systems and also signals arising from ten aromatic protons. There is a broad signal which integrates for one proton which is assigned to an OH group.The 13C and 3/4 n NMR spectra reveal the following: (a) There are 26 non-equivalent carbons including 7 methyls, 3 methylenes, 6 aliphatic quaternaries, 8 aromatics and 2 carbonyls. (b) There are no signals which may be assigned to a I-pyrrolinyl carbon (16 175)**' or to a keto I-pyrroline I-oxide (140-150 ppm).' (c) Of the 6 aliphatic quaternary carbons. one has a chemical shift of 106.1 ppm and therefore must be bonded to two electronegative atoms. There is only one singlet arising from a carbon bonded to a benzoyloxy group (87.72 ppm) and, consequently, only one of the hydroxy groups is esterified and the remaining benzoyl group must be present as an acyloxyamine.The unesterified tertiary alcohol gives rise to a signal at 75.48 ppm. A suggested mechanism for the formation of 8 is shown in 0-002 6 9 Me 0-6 10 6 Me c-~i'Me 12 11 Scheme 2 i, PhCOCl(0.5 equiv.) J. CHEM. SOC. PERKlN TRANS. I 1995 Scheme 2. It has been shown that the nitronyl oxygen of 1-pyrroline I-oxides is a good electrophile' and it would be expected that treating the nitrone 6 with benzoyl chloride would lead initially to the formation of the N-benzoyloxy- iminium cation 9. It is proposed that the cation 9 undergoes deprotonation at the 2-methyl group to give the N-benzoyloxy- 2,2'-exo-methylenepyrrolidine10 which does not undergo the expected hetero-Cope rearrangement to 2-benzoyloxymethyl- 3,5,5-trimethyl-3-hydroxy-I-pyrrolinebut adds nucleophilic- ally to a molecule of unchanged nitrone 6 with the tandem ring closure of the intermediate bridged N-benzoyloxyiminium-N'- hydroxonium species 11 to give the spiro tricyclic dialcohol 12.This dialcohol undergoes selective benzoylation of one of the hydroxy groups. It was not possible to determine the site of benzoylation spectrometrically. Molecular modelling of the dialcohol 12 suggests that the hydroxy groups are in practically identical environments since the fused bicyclic rings attached at the pyrrolidinyl 2'-position do not give rise to increased steric crowding of the 3'-OH.In structure 8 the 6-OH has been arbitrarily indicated as the site of benzoylation in preference to 3'-OH, however this is conjectural. When Alazard and co-workers lo treated the fused pentacyclic 2-methyl-1 -pyrroline 1-oxide 13 with benzoyl ww 13 14 15 Scheme 3 chloride, 0-benzoylation was followed by deprotonation of the 2-methyl group to give the exocyclic 2,2'-exo-methylene-N- benzoyloxypyrrolidine 14 which underwent a hetero-Cope rearrangement to give the 2-benzoyloxymethylpyrrolidine 15. There is no report of the nucleophilic attack of the intermediate 14 upon unchanged 1-pyrroline 1-oxide, probably due to the large steric bulk of these steroid-based nitrones. Also no B-deprotonation at C-3 was observed since this would necessitate forming a bridgehead double bond at the junction of two fused five-membered rings which would not be favoured. When Black and Strauch I ' treated 2,5,5-trimethyl- 1 -pyrro-line 1-oxide 16 with benzoyl chloride in pyridine, of the two possible P-benzoyloxy-I-pyrrolines only the 3-benzoyloxy adduct 20 was formed.Initial benzoylation is followed by j3 deprotonation to give an z,P unsaturated N-benzoyloxypyr- rolidine prior to the Hetero-Cope rearrangement to the product P-benzoyloxy-1 -pyrroline. It is unclear whether the non-formation of the 2-benzoyloxymethyl- 1-pyrroline 18 is due to the relative rate of j3-deprotonation at C-3 being greater than at 2-Me so that the formation of the 2,2'-exo-methylene-N- benzoyloxypyrrolidine 17 is disfavoured or whether both the a,j3 unsaturated N-benzoyloxypyrrolidines17 and 19 exist in equilibrium but the latter undergoes rearrangement to the j3- J.CHEM. SOC. PERKIN TRANS. I 1995 Me OBZ Q-19 16 MeQCHp IMe OBZ 20 17 f 18 Scheme 4 benzoyloxy-1-pyrroline at a much faster rate than does the former. The benzoylation of the 3,3-disubstituted- I -pyrroline I-oxide 6 presents an intermediate case. As with the fused bicyclic nitrone 13, 0-benzoylation can only be followed by p-deprotonation of the 2-methyl group to give the N-benzoyloxy- 2-em-methylenepyrrolidine 10. In this case nucleophilic attack by 10 on unchanged nitrone is more rapid than rearrangement to the corresponding 2-benzoyloxymethyl- I -pyrroline.This observation suggests that such rearrangements are slow and are probably only feasible when, for structural reasons, both p-deprotonation at C-3 is prevented and when nucleophilic reactions of the intermediate N-benzoyloxy-2-e,xo-methyl-enepyrrolidine are sterically hindered. Experimental For instrumentation details see previous paper in series. 3-Methylbut-3-enone 1.-The ketone 1 was prepared from butanone according to the method of Cook and Waring;7 b.p. 98-100 "C 98-100 "C), m.p. of 2,4-dinitrophenylhydra- zone 186-187 OC (lit.,' 189.5-191.5 "C). 3.5-Dimethyl-5-nitrohexan-2-one 2.-3-Methylbut-3-enone (1 1.47 g, 0. I36 mol) in dried tetrahydrofuran (THF) (30 cm3) was added over 2 h to a solution of freshly distilled 2- nitropropane (18.25 g.0.205 mol) and Triton B* (1 cm3) in dried THF (20 cm3) at 5 "C with vigorous stirring. The reaction mixture was quenched by acidification with hydrogen chloride gas and concentrated to afford an oil which was distilled to give the title nitro ketone (19.3 g, 82) as an oil, b.p. 80-85 "C at 0.1 mmHg 118-120"C at 2 mmHg); v,,,/cm-' 1718 and 3-Hyiiroxy-3,5-dimeth,vl-5-nitrohexan-2-one5.-Asolution of the hexanone 2 (3.92 g, 0.022 rnol) in carbon tetrachloride (20 cm3) was treated with acetic anhydride (8.13 g, 0.080 mol) and perchloric acid (70; 0.5 cm3) with stirring. After 24 h the FTIR spectrum of the solution revealed that the carbonyl stretch of * Triton B' Benzyltrimethylammonium hydroxide, 40 wt.solution in methanol. Aldrich Chemical Company Ltd. the ketone at 1718 cm-' was absent and had been replaced by a band at 1750 cm-' arising from the enol acetate 3. Water (50 cm3) and ether (70 cm3) were added to the dark brown solution followed by potassium hydrogen carbonate, added in portions until all effervescence ceased. The aqueous phase was separated and extracted with ether (50 cm3) and the combined ether fractions were washed with water (30 cm3), dried (CaCI,) and concentrated to afford an oil. This was taken up in di- chloromethane (DCM) (20 cm3) and m-CPBA (50 active peracid; 7.80 g, 0.022 mol) was added slowly to the solution with stirring. After 48 h the precipitated m-chlorobenzoic acid was collected and the filtrate was concentrated under reduced pressure to 15 cm3.After 2 h a further crop of rn-chlorobenzoic acid was collected and the filtrate was reduced to a colourless solid. This was taken up in ethanol (100 cm3) and treated with hydrochloric acid (2 mol drn-,; 20 cm3) for 2 h under reflux. The cooled solution was concentrated to 30 cm3 and extracted with chloroform (2 x 40 an3). The combined extracts were washed successively with sat. aqueous sodium hydrogen carbonate (2 x 30 cm3) and water (2 x 30 cm') and then dried (MgSO,) and evaporated to give the title hydroxy ketone (1.77 g, 45 based on ketone 2) which was recrystallised from DCM to give largeoff-whiteprisms,m.p.72-73 "C(Found: C, 51.2; H, 8.1;N, 7.3. C,Hl,N06 requires C, 50.8; H, 8.0;N, 7.4); v,,x/cm-l 3451,1700,154l,1455,1406,l352,1l92,1169and l151;6,1.31 (3 H, s, 3-CH,), 1.50, 1.55 (both 3 H, s, gem-CH,), 2.26 (3 H, s, COCH,), 2.48 (1 H, d, J 15.5, 4-H), 2.67 (1 H, d, J 15.5, 4'-H) and3.56(1 H, brs,0H);Sc23.52,25.26,27.76,28.32(4CH,),x 46.51 (C-4), 77.69 (C-3), 86.07 (C-5) and 21 1.6 (C=O).3-Hydroxy-2,3,5,5-tetramethyl-4,5-dihydro-3H-pyrrole1-0x-ide 6.-A mixture of the hexanone 5 (0.918 g, 4.85 mmol), THF (30 cm3), water (30 cm3) and ammonium chloride (1.35 g, 25.2 mmol) was cooled to 0-5 "C. Zinc dust (3.12 g, 47.7 mmol) was added slowly to the mixture over 2 h with vigorous stirring after which stirring was continued for a further 2 h. The zinc salts were then collected and washed with THF (2 x 20 cm3) and the combined filtrate and washings were reduced to 20 cm3 and extracted with chloroform (2 x 30 cm3).The combined extracts were dried (MgSO,) and concentrated under reduced pressure and the residue was recrystallised from ether-acetone (1 : 1) to give the title nitrone 6 (0.549 g, 72) as large plates, m.p. 109-1 10 "C (Found: M+, 157.1 103. C,H,,N02 requires M', 157.1103); v,,,/cm-' 3219, 1617, 1474, 1458, 1437, 1375, 1319, 1310, 1242, 1227 and 1184; 6, 1.6 (3 H, s, 3-CH3), 1.44, 1.45(both 3 H, s,gem-CH,), 1.97 (3 H, s, 2-CH,), 2.1 1 (1 H, d, J 12.0,4-H), 2.22 (1 H, d, J 12.0,4'-H) and 4.66 (I H, br s, OH); 9.05, 26.48, 26.90 (4 x CH3). 49.32 (C-4), 72.34 (C-3), 75.64 (C-5) and 147.4 (C-2); m/z (El) 157 (M', 573, 142 (10) and 43 (100);mlz (NH, chemical ionisation) I58 (M' + I, loo), 142 (10) and I40 (21).1,6-Dzben~oyloxy-3',5',5',5,6,8,8-heptarneth,v~-3'-hydro.uy-spiro2-oxa-l-azabicyclo3.3.0octnne-3,2'-pyrrolzdine8.-A stirred solution of the I-pyrroline I-oxide 6 (98 mg, 0.62 mmol) and pyridine (49 mg, 0.62 mmol) in DCM (5 em3) was treated with benzoyl chloride (87 mg, 0.62 mmol) over 16 h. It was then diluted with DCM (20 cm3), and washed with sat. aqueous potassium hydrogen carbonate (2 x 10 cm3), dried (MgSO,) and evaporated to provide a foam, m.p. 69-70 "C (Found: M+ +I, 523.2808. C,,,H,,N,O6 requires M + 1, 523,2808); v,,,/ cm~'3397,1746,1738,1601,1453,1408,1381,1314and1246;JH l.ll,1.19,1.20,1.21,1.30,1.37,1.55(each3H,s.7x CH,),1.60 (1 H,d,J15.1), 1.81 (1 H,d,J12.0), 1.85(1 H,d.J13.8),2.21(1 H, d, J 12.0), 2.45 (1 H, d, J 13.8), 2.48 (1 H, d, J 15.1), 5.14 (1 H, br s, OH) and 7.38-8.04 (10 H, m, 2 x ArH); 6, 17.30q, 25.45q, 25.55q, 26.80q, 29.10q, 29.24q, 29.55q (7 x CH,), 41.60t (C-4), 50.36t (C-4'), 51.16t (C-2), 62.22s (C-8), 65.16s (C- 5'),74.00~ (C-5), 75.48s (C-3'), 87.27s (C-6), 106.1 (C-3), 128.5d, 128.64, 129.ld, 129.3d, 129.64, 129.7d, 133.2d, 133.64 (2 x ArH), 166.3s and 166.9s (2 x GO); m/z (EI) 523 (M+ +I, 279,401 (71), 343 (lo), 302 (12), 281 (39,279 (34), 262 (38), 244 (18), 221 (26), 264(23), 140(18), 124(25), 122(32), 105 (loo), 77 (36) and 43 (33); m/z (NH, chemical ionisation) 523 (M' + 1, lo), 401 (49,281 (loo), 279 (50), 262 (45) and 105 (18).Acknowledgements This work was supported by SmithKline Beecham plc.The mass spectra were determined by the SERC Mass Spectrometry Service at the University College of Swansea. References 1 Previous paper in series, N. J. Gibson and A. R. Forrester, J. Chem. Soc., Perkin Trans. I, 1995,preceding paper. 2 E. Bruer, in The Chemistry of Amino, Nitroso and Nitro Compounds and their Derivatives, Part I, The Chemistry of Functional Groups, Supplement F, ed. S. Patai, Wiley, Chichester, 1982, p. 460; J. CHEM. SOC. PERKIN TRANS. I 1995 S. Tamgaki, S. Kozuka and S. Oae, Tetrahedron, 1970, 26, 1795; S. Tamgaki and S. Oae, Bull. Chem. SOC.Jpn., 1971,44,2851. 3 A. R. Forrester and R. H. Thompson, J. Chem. Soc., 1963,5632; K. H. Pfoertner and J. Foricher, Helv. Chim. Acta, 1980, 63, 658. 4 N. J. A. Gutteridge and J. R. M. Dales, J. Chem. SOC. C, 1971, 122; C. H. Cummins and R. M. Coates, J. Org. Chem., 1983, 48, 2070; D. St. C. Black and L. M. Johnstone, Aust. J. Chem., 1984, 37, 95. 5 D. St. C. Black and A. B. Boscacci, Aust. J. Chem., 1976,29,2511. 6 E. Finkelstein, G. M. Rosen, E. J. Baukman and J. Paxton, Mol. Pharmacol., 1979, 16,676. 7 K. L. Cook and A. J. Waring, J. Chem. Soc., Perkin Trans. I, 1973, 529. 8 N. J. Gibson, Ph.D. Thesis, University of Aberdeen, 1991. 9 W. Kemp, Qualitative Organic Analysis, Spectrochemical Tech- niques, McGraw-Hill, Maidenhead, 2nd edn., p. 155. 10 J. P. Alazard, B. Khemis and L. Lusinchi, Tetrahedron, 1975, 31, 1427. 11 D. St. C. Black and R. J. Strauch, Aust. J. Chem., 1989,42, 71. Paper 4104555F Received 25th July 1994 Accepted 24th October 1994
机译:J. CHEM. SOC. PERKIN TRANS. 1 1995 3-羟基-2,3,5,5-四甲基-l-吡咯啉 1-氧化物(3-羟基-2,3,5,5-四甲基I-4,5-二氢-3H-吡咯啉 1-氧化物)的制备和苯甲酰化,'Neil J. Gibson,8 Alexander R. Forrester“raand Charles Brownb a 化学系,阿伯丁大学,梅斯顿沃克,阿伯丁 AB9 2UE,英国'Smith-Kline Beecham Ltd., The Frythe, Welwyn, Herts A16 SAR.英国 ~~ ~ ~ ~ ~ ~ ~ ~ 在Schotten-Baumann条件下,用苯甲酰氯分六步处理由丁酮制备的2,3,5,5-四甲基-3-羟基-l-吡咯啉1-氧化物6,导致前所未有的二聚化,得到螺,三环N-苯甲酰氧基吡咯烷,收率高。硝基的酰化已被广泛研究。 缺乏质子 p 到硝基碳的亚硝基通常经历 0-iii,iv MMe e d o 酰化,然后酰氧基向 L-4f-1,2 迁移,得到 1-酰氧基亚胺,该亚胺发生酸解,导致 NO2 Me 形成酰胺.2 在具有质子的亚硝酸盐的情况下, 0酰化后通常由1,3-Hetero-Cope 1迁移酰氧基得到(3-酰氧基亚胺~。~-~ Aldo I-吡咯啉 1-氧化物在用酸酐^,^ 酰氯4和氯甲酸酯处理时得到 3-酰氧基 1-吡咯啉,' 在我们研究制备在C-3处带有亲电取代基的L-吡咯啉I-氧化物的过程中,我们制备了3-羟基-1-吡咯啉1-氧化物6,并用苯甲酰氯和吡啶处理以达到酯化作用。所需的推定酯 3-苯甲酰氧基-2,3,5,5-四甲基-I-吡咯啉 I-氧化物 7 预计不会成为超氧化物的有用自旋阱,因为它缺乏对硝基碳的质子 Q,并且所有自旋加合物都会给出 ESR 光谱,这些光谱是简单的三重态,如 TMPO 16.6 然而,它旨在建立在 C-3 处具有亲电基团的 1-吡咯啉 1-氧化物(如 7)可以自旋陷阱的原理超氧化物,随后通过分子内酯交换“加合物”加合物的氢过氧官能团。3-羟基-2,3,5,5-四甲基-L-吡咯啉结果与讨论 根据方案1从丁酮制备1-氧化物。丁酮用碱性多聚甲醛水溶液处理,得到羟甲基醛加合物,虽然没有分离出来,但用多磷酸法用Cook和3-甲基丁-3-烯-2-酮1脱水,得到Waring。z,P-不饱和酮1经过2-硝基丙烷的Michael加成,得到y-硝基酮2。当2用浓高氯酸和醋酐处理时,缓慢形成烯醇乙酸酯3。通过观察酮的羰基拉伸在1720cm处的吸光度减小,同时在1750 cm-'处增加乙醇的羰基拉伸,可以很容易地监测反应的程度。乙酸烯醇酯3在二氯甲烷中用间氯过苯甲酸(m-CPBA)处理得到乙酰氧基环氧化物4,在回流乙醇中用无机酸处理得到3-羟基己烷-2-酮5.用锌粉和氯化铵水溶液还原y-硝基酮得到3-羟基-1-吡咯啉1-氧化物6,收率很高。t 尽管在本文的前面部分中,为了方便起见,这些化合物被描述为 1-吡咯啉,但 IUPAC 批准的名称在实验部分给出。/* Me-.,,+,, Me A O A ME NO:, ME NO:, ME 3 Me&o Me NO2 Me 5 viii Me &: Me y0-y6Me OH Me&: I 0-N Me ';Jtea+$ =Me Me 0-8 7 方案 1 i, (CH,O),, NaOH,,;ii, H,PO,, Cu, 回流;iii. 我,CHNO,,Triton BO,THF;iv, 人机交互,;v, Ac,O, CCI,, HClO,(浓缩);vi, m-CPBA;vii、2 RNol dm?人机交互。EtOH,反流;viii, 锌, NHbCI.四氢呋喃。H,O;ix, Py, PhCoC' equiv,)。羟基硝基 6 的红外光谱在 3129 (羟基) 和 1617 cm-' (C=N) 处显示出强烈的吸收。lH NMR谱图显示四个甲基,其中一个甲基的化学位移为1.97 ppm,与2-甲基-I-吡咯啉I-氧化物一致。' 4-CH2 质子产生 AB 四重奏 (JI2 Hz),并且羟基质子产生一个宽广的、可交换的信号。由于其中两个甲基的等效性,I3C NMR谱图仅显示七个信号。C-2 的化学位移为 147.4 ppm,这是 2-甲基-I-吡咯啉 I-氧化物的特征,而 C-3 的化学位移为 72.34ppm,这与与羟基键合的季碳一致。用苯甲酰氯(1当量)和吡啶在二氯甲烷中处理3-羟基-1-吡咯啉1-氧化物6未能诱导羟基功能的简单酯化反应,得到酯7,相反,三环螺苯甲酰氧胺8被分离出来,收率很高。后者在 3397 (羟基) 和 1746 和 1738 cm-' ((24) 处的 IR 区域显示出强烈的吸收。除了苯基 C==C 键的“环呼吸”拉伸产生的 1601 cm-' 处的弱带外,1500-1700 cm-' 范围内没有吸光度,这表明不存在 C=N 键。'H NMR 谱图 8 显示了 7 个甲基共振、来自其他 6 个脂肪族质子的信号,包括 3 个 AB 自旋系统,以及来自 10 个芳香族质子的信号。有一个宽信号,它对分配给 OH 基团的一个质子进行积分。13C 和 3/4 n NMR 谱图显示:(a) 有 26 个非等效碳,包括 7 个甲基、3 个亚甲基、6 个脂肪族季元、8 个芳烃和 2 个羰基。(b) 没有信号可以分配给I-吡咯烷基碳(16&175)**'或酮I-吡咯啉I-氧化物(140-150 ppm)。(c) 6种脂肪族季碳。一个具有 106.1 ppm 的化学位移,因此必须与两个电负性原子键合。与苯甲酰氧基(87.72 ppm)键合的碳只有一个单线态,因此,只有一个羟基被酯化,其余的苯甲酰基必须以酰氧基胺的形式存在。未酯化的叔醇产生 75.48 ppm 的信号。A suggested mechanism for the formation of 8 is shown in 0-002 6 9 Me 0-6 10 6 Me c-~i'Me 12 11 Scheme 2 i, PhCOCl(0.5 equiv.) J. CHEM. SOC. PERKlN TRANS.I 1995 方案 2.已经表明,1-吡咯啉I-氧化物的硝基氧是一种良好的亲电试剂,预计用苯甲酰氯处理硝基6最初会导致N-苯甲酰氧基亚胺阳离子9的形成。建议阳离子 9 在 2-甲基处发生去质子化,得到 N-苯甲酰氧基-2,2'-外亚甲基吡咯烷 10,它不经历预期的异质 Cope 重排到 2-苯甲酰氧基甲基-3,5,5-三甲基-3-羟基-I-吡咯啉,但通过中间桥接的 N-苯甲酰氧基亚胺-N'-羟基鎓物种 11 的串联环闭合,将亲核添加到未改变的硝基分子 6 中,从而得到螺三环二醇 12。该二醇经历其中一个羟基的选择性苯甲酰化。无法通过光谱法确定苯甲酰化位点。二醇 12 的分子模型表明,羟基处于几乎相同的环境中,因为连接在吡咯烷基 2'-位置的熔融双环不会引起 3'-OH 的空间拥挤增加。在结构 8 中,6-OH 被任意表示为苯甲酰化位点,而不是 3'-OH,但这是推测。当Alazard及其同事用苯甲酰ww 13 14 15方案3氯化物处理稠合的五环2-甲基-1-吡咯啉1-氧化物13时,0-苯甲酰化后,2-甲基去质子化,得到外环2,2'-外亚甲基-N-苯甲酰氧基吡咯烷14,后者进行杂Cope重排,得到2-苯甲酰氧基甲基吡咯烷15。没有关于中间体14对不变的1-吡咯啉1-氧化物的亲核攻击的报道,这可能是由于这些类固醇基亚硝酸盐的大量空间体。此外,在C-3处没有观察到B-去质子化,因为这需要在两个熔融的五元环的连接处形成桥头双键,这是不受欢迎的。当 Black 和 Strauch I ' 用苯甲酰氯的吡啶处理 2,5,5-三甲基-1-吡咯啉 1-氧化物 16 时,在两种可能的对苯甲酰氧基-I-吡咯啉中,仅形成 3-苯甲酰氧基加合物 20。初始苯甲酰化后进行 j3 去质子化,得到 z,P 不饱和的 N-苯甲酰氧基吡咯烷,然后异质重排为产物 P-苯甲酰氧基-1-吡咯啉。目前尚不清楚 2-苯甲酰氧基甲基-1-吡咯啉 18 的未形成是由于 C-3 处的 j3-去质子化相对速率大于 2-Me,因此 2,2'-外亚甲基-N-苯甲酰氧基吡咯烷 17 的形成是不利的,还是 a,j3 不饱和 N-苯甲酰氧基吡咯烷17 和 19 都处于平衡状态,但后者经历了重排到 j3- J.CHEM. SOC. PERKIN TRANS.I 1995 Me OBZ Q-19 16 MeQCHp IMe OBZ 20 17 f 18 Scheme 4 苯甲酰氧基-1-吡咯啉的速度比前者快得多。3,3-二取代-I-吡咯啉I-氧化物6的苯甲酰化反应为中间体。与稠合的双环硝基13一样,0-苯甲酰化后只能进行2-甲基的p-去质子化,得到N-苯甲酰氧基-2-em-亚甲基吡咯烷10。在这种情况下,10对未改变的硝基的亲核攻击比重排到相应的2-苯甲酰氧基甲基-I-吡咯啉更快。这一观察结果表明,这种重排是缓慢的,并且可能只有在由于结构原因阻止了C-3位点的p-去质子化以及中间体N-苯甲酰氧基-2-e,xo-甲基-烯吡咯烷的亲核反应受到空间阻碍时才可行。实验 有关仪器的详细信息,请参阅之前的系列论文。3-甲基丁-3-丁酮 1.-酮1由丁酮按Cook和Waring的方法制得;7 b.p. 98-100 “C 98-100 ”C), 2,4-二硝基苯腙区 186-187 OC (lit.,' 189.5-191.5 “C).3.5-二甲基-5-硝基己烷-2-酮 2.-3-甲基丁-3-烯酮(1 1.47g, 0.I36 mol)在干燥的四氢呋喃(THF)(30 cm3)中加入2 h后,在5“C下,在5”C下将新鲜蒸馏的2-硝基丙烷(18.25 g.0.205 mol)和Triton B*(1 cm3)在干燥的THF(20 cm3)中的溶液中加入2 h。将反应混合物用氯化氢气体酸化并浓缩得到油,蒸馏得到称为硝基酮(19.3 g,82%)作为油,b.p. 80-85“C at 0.1 mmHg 118-120”C,2 mmHg);v,,,/cm-' 1718 和 3-Hyiiroxy-3,5-dimeth,vl-5-nitrohexan-2-one.-己酮 2 (3.92 g, 0.022 rnol) 在四氯化碳 (20 cm3) 中的溶液用醋酸酐 (8.13 g, 0.080 mol) 和高氯酸 (70%; 0.5 cm3) 搅拌处理。24 h后,溶液的FTIR谱图显示,羰基拉伸的*Triton B'苄基三甲基氢氧化铵,40%重量的甲醇溶液。Aldrich Chemical Company Ltd. 1718 cm-' 处的酮不存在,取而代之的是 1750 cm-' 处的带,由烯醇乙酸盐 3.将水(50cm3)和乙醚(70cm3)加入深棕色溶液中,然后加入碳酸氢钾,分批加入,直到所有泡腾停止。分离水相并用乙醚(50 cm3)萃取,合并后的醚馏分用水(30 cm3)洗涤,干燥(CaCI)并浓缩以得到油。将其吸收在二氯甲烷(DCM)(20 cm3)中,并在搅拌下缓慢加入m-CPBA(50%活性过酸;7.80g,0.022mol)溶液中。48小时后,收集沉淀的间氯苯甲酸,滤液减压浓缩至15cm3。2小时后,再收集一茬rn-氯苯甲酸,滤液还原为无色固体。将其在乙醇(100cm3)中吸收,并在回流下用盐酸(2moldrn-,;20cm3)处理2小时。将冷却的溶液浓缩至30 cm3,并用氯仿(2 x 40 an3)萃取。将合并的提取物先后用饱和碳酸氢钠水溶液(2 x 30 cm3)和水(2 x 30 cm')洗涤,然后干燥(MgSO,)并蒸发得到标题羟基酮(1.77 g,45%基于酮2),从DCM重结晶得到大的白色棱镜,m.p.72-73“C(发现:C,51.2;H,8.1;N,7.3。C,Hl,N06 要求 C, 50.8;H,8.0;N,7.4%);v,,x/cm-l 3451,1700,154L,1455,1406,L352,1L92,1169和L151;6,1.31 (3 H, s, 3-CH,), 1.50, 1.55 (均为 3 H, s, gem-CH,), 2.26 (3 H, s, COCH,), 2.48 (1 H, d, J 15.5, 4-H), 2.67 (1 H, d, J 15.5, 4'-H) 和 3.56(1 H, brs,0H);Sc23.52,25.26,27.76,28.32(4CH,),x 46.51(C-4),77.69(C-3),86.07(C-5)和21 1.6(C=O).3-羟基-2,3,5,5-四甲基-4,5-二氢-3H-吡咯-1-0x-亚胺的混合物6.-A将己酮5(0.918g,4.85mmol),THF(30cm3),水(30cm3)和氯化铵(1.35g,25.2mmol)冷却至0-5“C。再2小时。然后收集锌盐并用THF(2×20cm3)洗涤,将合并的滤液和洗涤液还原至20 cm3并用氯仿(2×30cm3)萃取。将合并的提取物(MgSO,)干燥并在减压下浓缩,并将残留物从醚-丙酮(1:1)中重结晶,得到标题硝基6(0.549g,72%)作为大板,熔点109-1 10“C(发现:M+,157.1 103。C,H,,N02 需要 M', 157.1103);v,,,/cm-' 3219、1617、1474、1458、1437、1375、1319、1310、1242、1227 和 1184;6, 1.6 (3 H, s, 3-CH3), 1.44, 1.45(均为 3 H, s,gem-CH),1.97 (3 H, s, 2-CH,), 2.1 1 (1 H, d, J 12.0,4-H), 2.22 (1 H, d, J 12.0,4'-H) 和 4.66 (I H, br s, OH);& 9.05, 26.48, 26.90 (4 x CH3).49.32(C-4)、72.34(C-3)、75.64(C-5)和147.4(C-2);m/z (El) 157 (M', 573, 142 (10) 和 43 (100);mlz (NH, 化学电离) I58 (M' + I, loo%), 142 (10) and I40 (21).1,6-Dzben~oyloxy-3',5',5',5',5,6,8,8-heptarneth,v~-3'-hydro.uy-spiro[2-oxa-l-azabicyclo[3.3.0]辛烯-3,2'-吡咯啶]8.-A的I-吡咯啉I-氧化物6(98mg,0.62mmol)和吡啶(49mg,0.62mmol)在DCM(5em3)中的搅拌溶液用苯甲酰氯(87mg,0.62mmol)处理16小时。然后用DCM(20 cm3)稀释,并用碳酸氢钠水溶液(2 x 10 cm3)洗涤,干燥(MgSO,)并蒸发以提供泡沫,熔点69-70“C(发现:M+ +I,523.2808。C,,,H,,N,O6 需要 M + 1, 523,2808);v,,,/ cm~'3397,1746,1738,1601,1453,1408,1381,1314和1246;JH l.ll,1.19,1.20,1.21,1.30,1.37,1.55(each3H,s.7x CH,),1.60 (1 H,d,J15.1), 1.81 (1 H,d,J12.0), 1.85(1 H,d.J13.8),2.21(1 H, d, J 12.0), 2.45 (1 H, d, J 13.8), 2.48 (1 H, d, J 15.1), 5.14 (1 H, br s, OH) 和 7.38-8.04 (10 H, m, 2 x ArH);6、17.30q、25.45q、25.55q、26.80q、29.10q、29.24q、29.55q (7 x CH、)、41.60t (C-4)、50.36t (C-4')、51.16t (C-2)、62.22s (C-8)、65.16s (C-5')、74.00~ (C-5)、75.48s (C-3')、87.27s (C-6)、106.1 (C-3)、128.5d、128.64、129.ld、129.3d、129.64、129.7d、133.2d、133.64 (2 x ArH)、166.3s 和 166.9s (2 x GO);m/z (EI) 523 (M+ +I, 279,401 (71), 343 (lo), 302 (12), 281 (39,279 (34), 262 (38), 244 (18), 221 (26), 264(23), 140(18), 124(25), 122(32), 105 (loo), 77 (36) 和 43 (33); m/z (NH, 化学电离) 523 (M' + 1, lo%), 401 (49,281 (loo), 279 (50), 262 (45) 和 105 (18).致谢 这项工作得到了SmithKline Beecham plc的支持。质谱由斯旺西大学学院的SERC质谱服务确定。参考文献 1 上一篇系列论文,N. J. Gibson and A. R. Forrester, J. Chem. Soc., Perkin Trans.I, 1995,前一篇论文.2 E. Bruer, in The Chemistry of Amino, Nitro and Nitro Compounds and their Derivatives, Part I, The Chemistry of Functional Groups, Supplement F, ed. S. Patai, Wiley, Chichester, 1982, p. 460;J. CHEM. SOC. PERKIN 译.I 1995 S. Tamgaki, S. Kozuka and S. Oae, Tetrahedron, 1970, 26, 1795;S. Tamgaki 和 S. Oae,公牛。化学 SOC.Jpn, 1971,44,2851.3 A. R. Forrester 和 R. H. Thompson, J. Chem. Soc., 1963,5632;K. H. Pfoertner 和 J. Foricher,Helv。噗噗。学报, 1980, 63, 658.4 N. J. A. Gutteridge 和 J. R. M. Dales, J. Chem. SOC. C, 1971, 122;C. H. Cummins 和 R. M. Coates, J. Org. Chem., 1983, 48, 2070;D. St. C. Black 和 L. M. Johnstone, Aust. J. Chem., 1984, 37, 95.5 D. St. C. Black 和 A. B. Boscacci, Aust. J. Chem., 1976,29,2511.6 E. Finkelstein、G. M. Rosen、E. J. Baukman 和 J. Paxton,Mol. Pharmacol.,1979 年,16,676。7 K. L. Cook 和 A. J. Waring, J. Chem. Soc., Perkin Trans.我,1973 年,529。8 N. J. Gibson,博士论文,阿伯丁大学,1991年。9 W. Kemp,《定性有机分析》,Spectrochemical Tech-niques,McGraw-Hill,Maidenhead,第2版,第155页。10 J. P. Alazard, B. Khemis and L. Lusinchi, Tetrahedron, 1975, 31, 1427.11 D. St. C. Black 和 R. J. Strauch, Aust. J. Chem., 1989,42, 71.论文 4104555F 收稿日期 1994 年 7 月 25 日 录用日期 1994 年 10 月 24 日

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号