首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Benzoyl-substituted thiirans and oxathioles. The synthesis and properties of 2-benzoyl-5-phenyl-1,3-oxathiole
【24h】

Benzoyl-substituted thiirans and oxathioles. The synthesis and properties of 2-benzoyl-5-phenyl-1,3-oxathiole

机译:苯甲酰取代的噻吩和氧硫醇。2-苯甲酰基-5-苯基-1,3-氧硫杂环戊烯的合成及性能

获取原文
获取外文期刊封面目录资料

摘要

1978 1547 Benzoyl-substituted Thiirans and Oxathioles. The Synthesis and Pro-perties of 2-Benzoyl-5-phenyl-I ,3-oxathiole By Ulla Jacobsson Kempe, Tomas Kempe, and Torbjorn Norin,' Department of Organic Chemistry, Royal Institute of Technology, S-1 00 44 Stockholm 70, Sweden 2-Benzoyl-5-phenyl-l.3-oxathiole (8) has been prepared and characterized. The chemical and spectral properties of this compound confirm our previous assignment of the structure of 2-benzoyl-2,4,5-triphenyl-l,3-oxathiole (2a) which had earlier been reported to be 2,3-dibenzoyl-2,3-diphenylthiiran (1a). Deuterium-labelling experiments have shown that no equilibrium occurs under mild conditions (1 20 "C) between the 2-benzoyl-5-phenyt-I ,3-oxa- thiole (8) and the corresponding thiiran (1 5).At higher temperatures decomposition occurs. Upon rapid pyrolysis at 275 'C 1.2-dibenzoylethylene is formed. THE structural assignments lv2 for the compounds previously thought to be 2,3-dibenzoyl-2,3-diphenyl-thiiran (la) and the corresponding thiiran l-oxide (lb) and 1,l-dioxide (lc) have been revised and shown to be the corresponding oxathiole derivatives (2a-c) . These thiiran derivatives appear not to be stable compounds and seem to rearrange spontaneously to the correspond- ing oxathiole derivative^.^ Such a rearrangement will be analogous to the vinyl cyclopropane rearrangement and is thus reversible. However, it has not been possible to detect by deuterium labelling any equili- bration between 2-benzoyl-5-phenyl-l,3-oxathiole3,3-dioxide (3) and the corresponding thiiran 1,l-dioxide (4) under the experimental conditions used (< 150 OC).3 D.C. Dittmer and G. C. Levy, J. Org. Chem., 1965, 30, 636; D. C. Dittmer, G. C. Levy, and G. E. Kuhlmann, J. Amer. Chem. SOC.,1969, 91, 2097; D. C. Dittmer, G. E. Kuhlmann, and G. C. Levy, J. Ovg.Chem., 1970, 35, 3676; D. C. Dittmer, G. C. Levy, and G. E. Kuhlmann, J. Amer. Chem. Soc., 1967, $9, 2793. C. J. Ireland and J. S. Pizey, J.C.S. Chem. Comm., 1972, 4; G. Kresze and W. Wucherpfennig, Angew. Chem. Internat. Edn., 1967, 6, 149. In order to gain more information on the properties of oxathioles and their possible rearrangement to thiirans we have now studied 2-benzoyl-5-phenyl-1,3-oxathiole (8). This compound has been briefly described by Ollis and his co-workers,5 however, without any experimental details of its preparation or its properties.The oxathiole (8) was prepared according to the route previously ~utlined.~The starting material, 2,5-di-hydrothiophen (5) was synthesized via the reduction of thiophen according to Birch and McAllan.6 Attempts to prepare (5) from cis-1,4-dibromobut-2-ene or the corresponding 1,4-dichloride or 1,4-dimesylate by treat- ment with hydrogen sulphide-sodium ethoxide or sodium U. Jacobsson, T. Kempe, and T. Norin, J. Org. Chem., 1974, 39, 2722. J.-C. Paladini and J. Chuche, Bull. SOC.chim. France, 1974, 197; W. Eberbach and B. Burchardt, Tetrahedvon Letters, 1976, 3887. S. Mageswaran, W. D. Ollis, and I. 0.Sutherland, J.C.S. Chem. Comm., 1973, 656. S. F. Birch and D. T. McAllan, J. Chem. Soc., 1951, 2556. sulphide in ethanol gave poor yields. Phenacyl-2,5-di-hydrothiophenium bromide (6) was obtained by the Ph Ph 0 Bz XBzw;: PhX)(’Ph a; X=S b: SO c; so* treatment of (5) with a-bromoacetophenone. Dehydro-bromination of (6) gives the 2,5-dihydrothiophenium phenacylide (7), which when heated gives 2-benzoyl- 5-phenyl-1,3-oxathiole (8). Possible routes for the transformation of (7) into (8) are via the dihydrothio- pyran (9) 7 and subsequently 2-phenylthioglyoxal (10) (reaction (a) or by direct conversion into 2-phenylthio- glyoxal (10) (reaction (b) ; these mechanisms differ from the one suggested previ~usly.~ On storage over- (5) (6) 1EhN Ph 0 Bz 2x.Heat @+4”BZ CsxH *(8) -cs+lq (7) night the sulphonium ylide (7) is transformed into trans-1,2,3-tribenzoylcyclopropane (12) probably via the carbenoid intermediate (11). Sulphonium ylides are known to undergo such a reaction.* The structure of the oxathiole (8) has been settled by a consideration of its spectroscopic properties. The 13C n.m.r. spectrum which exhibits signals for the three ring carbons at 6 84.5 (C-2), 92.1 (C-4), and 151.3 (C-5) and for the carbonyl carbon at 6 189.6, is fully in accord with the previously reported3 13C n.m.r. chemical shifts of sever a1 oxathiole derivatives. The lH n.m.r. spectrum shows the phenyl protons as a multiplet at 6 ca. 7-8 and 7 W. Ando, S.Kondo, K. Nakayama, K. Ichibori, H. Kohoda, H. Yamato, I. Imai, S. Nakaido, and T. Migita, J. Amer. Chem. SOL, 1972, 94, 3870; E. Vedejs and J. P. Hagen, ibid., 1975, 97, 6878. 8 (a)B. M. Trost, J. Amer. Chem. SOC.,1967,89, 138; (b)A. W. Johnson and R. T. Amel, J. Org. Chem., 1969, 84, 1240. J.C.S. Perkin I two singlets at 6 6.98 and 5.83. The singlet at 6 6.98 disappears on base-promoted deuteriation of (8), thus indicating that it is due to the C-2 proton while the singlet at 6 5.83is assigned to the C-4 proton. The U.V. spectrum indicates an extended conjugated system (see Experimental section), as expected for a styrene chromo- phore with polar oxygen and sulphur substituents. BzCH=CHBzI”) The oxidation of (8) to obtain the corresponding sulphone (3) failed although the oxidation product (3)is known to be stable.Acetophenone was formed during 0 02 (13) (141 H S (8) (15) the reaction. Johnson and Rogers have reported several attempts to oxidize 5-phenyl-1,3-oxathiole 3-oxide (13). The corresponding sulphone (14) which is also a stable compound 3910911 was not obtained. * C. R. Johnson and P. E. Rogers, J. Org. Chem., 1973, 38, 1798. lo K. DickorC, Annabn, 1964, 871, 135. l1 H. Nozaki, M. Takaku, Y. Hayasi. and K. KondB, Tetra-hedron, 1968, 24, 6563. Previous studies have shown that there is no thermal equilibration between 2-benzoyl-5-phenyl-1,3-oxathiole 3,3-dioxide (3) and the thiiran 1,l-dioxide (4) at tem- peratures below 150 "C. The C-C bond of this thiiran 1,l-dioxide is expected to be rather weak 3912 and should thus favour the formation of oxathiole 3,3-dioxide (3) in such an equilibrium reaction.The C-C bond of the thiiran (15) is expected to be much stronger. It was, therefore, of interest to investigate the possibility of re- arranging the oxathiole (8) to the thiiran (15) or to investigate the existence of a thermal equilibration by deuterium labelling. The oxathiole (8),deuteriated in the 2-position was, therefore, prepared by a base-induced deuterium exchange reaction. Deuterium scrambling was not observed, either during the exchange reaction or upon heating the specifically deuteriated compound in refluxing benzene for 2 h. Furthermore, scrambling was not observed upon heating the deuteriated compound (neat) above its melting point (120 "C).At this tem- perature slight decomposition was observed. N.ni.r. measurements also showed that the decomposition was complete in 0.5 h at ca. 140 "C. On pyrolysis of the oxathiole (8)at 275 "C 1,2-dibenzoylethylene is formed as the sole volatile product. It is difficult to account for this decomposition without proposing, a mechanism involving the thiiran (15) as an intermediate which would then yield the olefin by extrusion of ~u1phur.l~ The intermediate thiiran (15)seems to decompose at a higher rate than it is converted back into the oxathiole (8). This explains why no deuterium scrambling is observed. The results of the present investigation give further evidence for the oxathiole nature of the compounds (2a-c), (3), and (8).Recently Pizey and his co-workers14 have claimed that they obtained the thiiran (la) upon treatment of deoxybenzoin with thionyl chloride. The product exhibited the same m.p. and spectroscopic properties as those of a compound previ- ously described by Dittmer and his co-workers and later shown by us to be the oxathiole (2a). EXPERIMENTAL The U.V. spectrum was recorded on a Becknian DK-2 spectrophotometer and the i.r. spectra on a Perkin-Elmer model 257 i.r. spectrophotometer. N.m.r. spectra were obtained using Varian model EM360 (60 MHz) and XL-100A (25.2 MHz, 13C n.m.r. spectrum) instruments. The samples were dissolved in CDC1, unless otherwise stated.Mass spectra were obtained using an LKB model 9000 mass spectrometer (direct inlet, 70 eV) Phenacyl-2,5-dihydrothiopheniumBromide (6).-A mix-ture of 2,5-dihydrothiophen (4.95g, 0.058mol) and phenacyl bromide (12 g, 0.060 mol) in anhydrous benzene (40 ml) was stirred at room temperature for 7 days (cf. ref. 15). A white solid crystallized from the reaction mixture. A first l2 R. Hoffmann, H. Fujimoto, J. R. Swenson, and C.-C. Wan, J. Amer. Chem. SOC.,1973, 95, 7644. l3 M. Sander, Chem. Rev., 1966, 66, 297. l4 C. J. Ireland, K. Jones, J. S. Pizey, and S. Johnson, Syn-lhrfic Comm., 1976, 8, 185. crop of the solid was collected after 3 days and the rest at the end of the reaction. After rinsing with ether the total yield of the white solid was 10.7 g (65y0),s(CD,),SO 4.46 (s, 4 H), 5.38 (s, 2 H), 6.06 (s, 2 H), and 7.34-8.18 (m, 5 H).2,5-Di?zydrothiophenium Phenacylide (7).-Triethylamine (2.84g, 0.028 mol) was added to a stirred suspension of the sulphonium bromide (6) (4 g, 0.014 mol) in ethanol (60 ml), cooled in an ice-bath (cf.ref. 8b). Stirring was continued at low temperature for 2 h after which the reaction was quenched with water. After extraction with chloroform the organic phase was washed with water and brine, dried, and evaporated in vuczcoto give 2.1 g (73.5) of the yellow ylide. The ylide was used immediately, due to its in- stability, 8(CD,),SO 4.03 (s, 4 H), 4.52br (s, 1 H), 6.03 (s, 2 H), and 7.16-7.80 (in, 5 H). 2-Benzoyl-5-phenyl- 1,3-oxathiole (8).-A solution of the sulphonium ylide (7) (2.1 g, 0.010 mol) in benzene (50 ml) was refluxed overnight.Evaporation in z'ucuo gave an oil which solidified on cooling. After rinsing the solid with isopentane it was recrystallized from a minimal amount of methanol to give 0.73 g (54.5) of orange needles, m.p, 109-110 "C, Amx, (95 EtOH) 241 (E 16 300), 283sh (6 SOO), 313 (8 SOO), 325sh (7 ZOO), and 400 nm (1 370); v,,.(KBr) 1 685 (s, GO) and 1240 cm-l (s, C=C-0); 5.83 (s, 1 H, =CH), 6.98 (s,1 H, CH), and 7.16-8.03 (m, 10 H, aromatic) ; 6c 189.6 (CZO),151.3 (C-5), 133.7, 132.8, 129.3, 128.8, 128.5, 125.1 (all aromatic), 92.1 (C-4), and 84.5 (C-2),J (C-2, H-2) 166.3, (C-2, H-4) 4.8, (C-4, H-4) 189.5, and (C-4, H-2) 1.4 Hz; m/e 268 (Mf, 7), 164 (11) 163 (M+-105, loo), 135 (23), 134 (12), 105 (16), 102 (6), 91 (40), 89 (6), and 77 (30).The Instability of the Ylide (7).-If the reaction mixture of the ylide preparation was stored in a refrigerator over-night, pale yellow crystals were isolated after recrystalliz- ation from methanol, m.p. 218-219 "C reported m.p for trans-1,2,3-tribenzoylcyclopropane( 12): 219-220 "C. The lH n.m.r. spectrum agreed with that reported for trans-1,2,3-tribenzoylcyclopropane( 12), m/e 354 (M+,1yo), 277 (M-' -77, 2), 250 (5),249 (M+-105, 27), 234 (l), 233 (7), 115 (Z), 106 (8), 105 (loo),78 (3), and 77 (35). Oxidation of Compound (8).-An excess of hydrogen peroxide (30; 5 ml) was added to the oxathiole (8) (200 mg, 0.75 mmol) dissolved in acetic acid (4 ml).The reaction mixture was refluxed for 3 h and was then allowed to cool overnight. After dilution with water the mixture was extracted with chloroform. The organic phase was washed with a saturated sodium hydrogencarbonate solution, water, and then brine, and then dried and evapor- ated in vucuo to give a yellow oil. The lH n.m.r. and i.r. spectra of the oil were in accord with those of an authentic sample of acetophenone. m-Chloroperbenzoic acid and perphthalic acid were also tried as oxidation reagents. However, the reaction mixtures were complex and no oxathiole 3,3-dioxide (3) could be detected. 2-Benzoyl-2-deuterio-5-~henyl-1,3-oxathiole 2-2H-(8).-The oxathiole (8) (ZOO mg, 0.75 mmol) was dissolved in deuteriochloroform (2 ml) and methan2H01 (1 ml).Tri-ethylamine ( 113 mg, 1.12 mmol) in deuteriochloroform was added and the solution was stirred for 2 h. The solvent was evaporated in vacuo and a small amount of methan2Hol 15 K. W. Ratts, J. Org. Chem., 1972, 37,848. l6 J. N. Shoolery, Svensk kern. Tidskf., 1957,69, 185; N. Obata and I. Moritani, Bull. Chem. SOC.Japan, 1966, 39, 1975. was added to the residual oil; 72 mg of a yellow solid separated, 6 5.83 (s, 1 H, =CH) and 7.10-8.10 (m, 10 H, aromatic); mle 269 (M+, 9), 165 (12), 164 (M+ -105,loo), 163 (8),136 (19), 135 (7), 134 (7), 105 (lo),92 (33), and 77 (23). Equilibration of 2-2H-(8).-(a) The oxathiole 2-2H-(8) was heated at 120 "C, which is slightly above its melting point, for 30 min; (b) the oxathiole 2-2H-(8) was heated in refluxing benzene for 2 h.The lH n.m.r. spectra of the product from the two runs (a)and (b)showed no scrambling of deuterium between the 2 and 4 positions in the oxathiole system. The n.m.r. spectrum of the sample from run (a) provided evidence for the fact that some decomposition had occurred. Additional experiments, when the oxathiole (8) was heated at various temperatures showed that the decom- position was complete after 30 min at 140 "C. The decom- J.C.S. Perkin I position product was a complex mixture, which has not been further investigated. Pyrolysis of (8).-The oxathiole (€9,dissolved in acetone, was injected on g.1.c. (injector and column temperatures were 275 and 200 "C, respectively; column 1.5 m x 3.2 mm, packed with 5 SE-30 on Varaport 30). The decom- position product, 1,2-dibenzoylethylene, was the only detectable compound after the solvent peak. The structure was proven by comparison with an authentic sample on g.1.c. and m.s. Financial support from The Swedish Natural Science Research Council is gratefully acknowledged. We thank Dr. T. Nishida, The Swedish Tobacco Company, for the 13C n.m.r. spectrum. 81345 Received 1st March, 19781
机译:1978 1547 苯甲酰取代的Thiirans和Oxathioles。2-苯甲酰基-5-苯基-I,3-氧硫杂环戊烯的合成和特性 作者:Ulla Jacobsson Kempe、Tomas Kempe 和 Torbjorn Norin,皇家理工学院有机化学系,S-1 00 44 Stockholm 70, Sweden 2-苯甲酰基-5-苯基-l.3-氧硫杂环戊烯 (8) 已经制备并表征了 2-苯甲酰基-5-苯基-l.3-氧硫杂环戊烯 (8)。该化合物的化学和光谱性质证实了我们之前对 2-苯甲酰基-2,4,5-三苯基-l,3-氧硫杂环戊烯 (2a) 结构的分配,该结构先前被报道为 2,3-二苯甲酰基-2,3-二苯基噻吩 (1a)。氘标记实验表明,在温和的条件下(1 20 “C),2-苯甲酰基-5-苯酰基-I,3-氧杂硫杂环戊 (8)和相应的噻吩(1 5)之间没有平衡。在较高的温度下会发生分解。在275'C下快速热解后,形成1.2-二苯甲酰乙烯。先前认为是 2,3-二苯甲酰基-2,3-二苯基-噻吩 (la) 和相应的噻吩 l-氧化物 (lb) 和 1,l-二氧化物 (lc) 的化合物的结构分配 lv2 已被修改并显示为相应的氧硫杂胺衍生物 (2a-c) 。这些噻吩衍生物似乎不是稳定的化合物,并且似乎自发地重排到相应的氧硫醇衍生物^.^ 这种重排将类似于乙烯基环丙烷重排,因此是可逆的。然而,在所使用的实验条件下(< 150 OC),无法通过氘标记检测 2-苯甲酰基-5-苯基-l,3-氧硫杂环戊烯 3,3-二氧化物 (3) 和相应的噻喃 1,l-二氧化物 (4) 之间的任何平衡。D. C. Dittmer, G. C. Levy, and G. E. Kuhlmann, J. Amer. Chem. SOC.,1969, 91, 2097;D. C. Dittmer, G. E. Kuhlmann, and G. C. Levy, J. Ovg.Chem., 1970, 35, 3676;D. C. Dittmer, G. C. Levy, and G. E. Kuhlmann, J. Amer. Chem. Soc., 1967, $9, 2793.C. J. Ireland 和 J. S. Pizey, J.C.S. Chem. Comm., 1972, 4;G. Kresze 和 W. Wucherpfennig,Angew。Chem. Internat.编辑, 1967, 6, 149.为了获得更多关于氧硫醇的性质及其可能重排为硫杂环糖的信息,我们现在研究了 2-苯甲酰基-5-苯基-1,3-氧硫唑 (8)。然而,Ollis和他的同事已经简要描述了这种化合物,5 然而,没有任何关于其制备或性质的实验细节。氧硫唑 (8) 是按照先前的路线制备的~utlined.~起始材料 2,5-二氢噻吩 (5) 是根据 Birch 和 McAllan 通过噻吩的还原合成的.6 尝试用硫化氢-乙醇钠或 U. Jacobsson 处理从顺式-1,4-二溴丁-2-烯或相应的 1,4-二氯化物或 1,4-二甲磺酸盐制备 (5) T. Kempe 和 T. Norin, J. Org. Chem., 1974, 39, 2722.J.-C. Paladini 和 J. Chuche,公牛。SOC.chim。法国, 1974, 197;W. Eberbach 和 B. Burchardt,Tetrahedvon Letters,1976 年,3887 年。S. Mageswaran、W. D. Ollis 和 I. 0.Sutherland,J.C.S. Chem. Comm.,1973 年,第 656 页。S. F. Birch 和 D. T. McAllan,J. Chem. Soc.,1951 年,2556 年。乙醇中的硫化物收率低。酚基-2,5-二氢苯噻溴化物(6)由Ph Ph 0 Bz XBzw;: PhX)('Ph a;X=S b:SO c;SO* 用 a-溴苯乙酮治疗 (5)。(6)的脱氢溴化得到2,5-二氢噻吩基(7),加热时得到2-苯甲酰基-5-苯基-1,3-氧硫杂环戊烯(8)。将(7)转化为(8)的可能途径是通过二氢硫代吡喃(9)7和随后的2-苯基硫代乙二醛(10)[(反应(a)]或直接转化为2-苯硫基乙二醛(10)[(反应(b)];这些机制与之前建议的机制不同~usly.~ 在储存上- (5) (6) 1EhN Ph 0 Bz 2x.热 @+4“BZ CsxH *(8) -[cs+lq (7) 夜,亚化磺酰化物 (7) 可能通过类碳酸中间体转化为反式-1,2,3-三苯甲酰基环丙烷 (12)。已知亚化磺会发生这样的反应。 氧硫硫基 (8) 的结构已通过考虑其光谱特性而确定。13C n.m.r.光谱显示了6 84.5 (C-2)、92.1 (C-4)和151.3 (C-5)处三个环碳和6 189.6处羰基碳的信号,与先前报道的3 13C n.m.r.两个sever a1氧硫醇衍生物的化学位移完全一致。lH n.m.r.光谱显示苯基质子在 6 ca. 7-8 和 7 W. Ando, S.Kondo, K. Nakayama, K. Ichibori, H. Kohoda, H. Yamato, I. Imai, S. Nakaido, and T. Migita, J. Amer. Chem. SOL, 1972, 94, 3870;E. Vedejs和J. P. Hagen,同上,1975年,第97页,第6878页。8 (a)B. M. Trost, J. Amer. Chem. SOC.,1967,89, 138;(b)A. W. Johnson 和 R. T. Amel, J. Org. Chem., 1969, 84, 1240.J.C.S. Perkin,I,6、6.98 和 5.83 的两个单位。6 6.98 处的单线态在 (8) 的碱基促进氘化过程中消失,因此表明这是由于 C-2 质子,而 6 5.83 处的单线态被分配给 C-4 质子。U.V.光谱表明一个扩展的共轭系统(见实验部分),正如具有极性氧和硫取代基的苯乙烯发色团所预期的那样。BzCH=CHBzI“)氧化(8)得到相应的砜(3)失败,尽管已知氧化产物(3)是稳定的。在0 02 (13) (141 H S (8) (15) 反应过程中形成苯乙酮。Johnson 和 Rogers 报道了多次氧化 5-苯基-1,3-氧硫杂环戊烯 3-氧化物的尝试 (13)。相应的砜(14)也是一种稳定的化合物3910911没有得到。* C. R. Johnson 和 P. E. Rogers, J. Org. Chem., 1973, 38, 1798.lo K. DickorC, Annabn, 1964, 871, 135.l1 H. Nozaki、M. Takaku、Y. Hayasi。和 K. KondB,四面体,1968,24,6563。先前的研究表明,2-苯甲酰基-5-苯基-1,3-氧硫杂环戊烯 3,3-二氧化物 (3) 和噻兰 1,l-二氧化物 (4) 在温度低于 150 “C 时没有热平衡。这种噻吩兰 1,l-二氧化物的 C-C 键预计相当弱 3912,因此应该有利于在这种平衡反应中形成氧硫杂环戊烯 3,3-二氧化物 (3)。预计 thiiran (15) 的 C-C 键会更强。因此,研究将氧硫唑(8)重新排列为噻吩(15)的可能性,或通过氘标记研究热平衡的存在是有意义的。因此,在 2 位氘化的氧硫硫醇 (8) 是通过碱诱导的氘交换反应制备的。无论是在交换反应期间还是在回流苯中加热特异性氘化合物 2 小时时,均未观察到氘扰扰。此外,在将氘代化合物(纯)加热到其熔点(120“C)以上时,没有观察到扰动。在此温度下观察到轻微的分解。N.ni.r.的测量还表明,在约140“C的温度下,分解在0.5小时内完成。在275“C下热解氧硫硫醇(8)时,形成1,2-二苯甲酰乙烯作为唯一的挥发性产物。如果不提出一种将噻兰(15)作为中间体的机制,就很难解释这种分解,然后通过挤出~u1phur来产生烯烃。l~中间体噻喃(15)的分解速度似乎高于其转化为氧硫杂环戊素(8)的速度。这就解释了为什么没有观察到氘扰动。本研究的结果进一步证明了化合物(2a-c)、(3)和(8)的氧硫醇性质。最近,Pizey和他的同事14声称,他们在用氯化亚砜处理脱氧安息香后获得了噻兰(la)。该产物表现出与Dittmer及其同事先前描述的化合物相同的m.p.和光谱特性,后来我们证明是氧硫醇(2a)。实验 UV光谱记录在Becknian DK-2分光光度计上,i.r.光谱记录在Perkin-Elmer 257型i.r.分光光度计上。使用瓦里安型号 EM360 (60 MHz) 和 XL-100A(25.2 MHz,13C nmr 光谱)仪器获得 N.m.r. 谱图。除非另有说明,否则样品溶解在CDC1中。使用LKB 9000型质谱仪(直接入口,70 eV)获得质谱图 苯酰基-2,5-二氢苯噻吩溴 (6).-将2,5-二氢噻吩(4.95g,0.058mol)和苯酰溴(12g,0.060mol)在无水苯(40ml)中的混合物在室温下搅拌7天(参见参考文献15)。由反应混合物结晶的白色固体。第一个 l2 R. Hoffmann、H. Fujimoto、J. R. Swenson 和 C.-C.Wan, J. Amer. Chem. SOC.,1973, 95, 7644.l3 M. Sander, Chem. Rev., 1966, 66, 297.l4 C. J. 爱尔兰, K.Jones, J. S. Pizey, and S. Johnson, Syn-lhrfic Comm., 1976, 8, 185.3 天后收集固体作物,其余在反应结束时收集。用乙醚冲洗后,将白色固体的总收率为10.7 g(65y0),s[(CD,),SO] 4.46 (s,4 h),5.38 (s,2 h),6.06 (s,2 h)和7.34-8.18(m,5 h).2,5-二杂子苯酚苯(7).-三乙胺(2.84g,0.028 mol)加入到溴化磺(6)(4 g, 0.014 mol)在乙醇(60ml)中,在冰浴中冷却(参见参考文献8b)。在低温下继续搅拌2小时,然后用水淬灭反应。用氯仿萃取后,用水和盐水洗涤有机相,干燥,在vuczco中蒸发,得到2.1克(73.5%)的黄色酰化物。由于其不稳定性,立即使用了 8[(CD,),SO] 4.03 (s, 4 H)、4.52br (s, 1 H)、6.03 (s, 2 H) 和 7.16-7.80 (in, 5 H)。将2-苯甲酰基-5-苯基-1,3-氧硫杂环戊烯(8).-亚磺酰亚胺(7)(2.1g,0.010mol)在苯(50ml)中的溶液回流过夜。在z'ucuo中蒸发产生一种油,该油在冷却时凝固。用异戊烷冲洗固体后,用极少量甲醇重结晶,得到0.73克(54.5%)橙色针状物,熔点,109-110“C,Amx,(95%EtOH)241(E 16 300),283sh(6 SOO),313(8 SOO),325sh(7 ZOO)和400nm(1 370);v,,.(KBr) 1 685 (s, GO) 和 1240 cm-l (s, C=C-0);5.83 (s, 1 H, =CH)、6.98 (s,1 H, CH) 和 7.16-8。03 (m, 10 H, 芳香族) ;6c 189.6 (CZO)、151.3 (C-5)、133.7、132.8、129.3、128.8、128.5、125.1(所有芳香族)、92.1 (C-4) 和 84.5 (C-2)、J (C-2、H-2) 166.3、(C-2、H-4) 4.8、(C-4、H-4) 189.5 和 (C-4, H-2) 1.4 Hz;m/e 268 (Mf, 7%)、164 (11)、163 (M+-105, loo)、135 (23)、134 (12)、105 (16)、102 (6)、91 (40)、89 (6) 和 77 (30)。酰化物的不稳定性 (7).-如果将酰化物制剂的反应混合物在冰箱中储存过夜,则在甲醇重结晶后分离出淡黄色晶体,m.p. 218-219 “C [反式-1,2,3-三苯甲酰基环丙烷( 12):219-220 ”C.反式-1,2,3-三苯甲酰基环丙烷(12)、m/e 354 (M+,1yo)、277 (M-' -77, 2)、250 (5)、249 (M+-105, 27)、234 (l)、233 (7)、115 (Z)、106 (8)、105 (loo)、78 (3) 和 77 (35) 的 lH n.m.r. 谱图一致。化合物(8)的氧化-将过量的过氧化氢(30%;5ml)加入溶解在乙酸(4ml)中的氧硫醇(8)(200mg,0.75mmol)。将反应混合物回流3小时,然后冷却过夜。用水稀释后,用氯仿萃取混合物。有机相用饱和碳酸氢钠溶液、水洗涤,然后用盐水洗涤,然后在杧杞中干燥蒸发,得黄色油。油的lH n.m.r.和i.r.光谱与真实的苯乙酮样品一致。间氯过苯甲酸和过苯二甲酸也被尝试作为氧化试剂。然而,反应混合物很复杂,不能检测到3,3-二氧化氧杂硫醇(3)。将2-苯甲酰基-2-氘代-5-~弛基-1,3-氧硫杂环戊[2-2H]-(8).-氧硫杂环戊烯(8)(ZOO mg,0.75 mmol)溶于氘代氯仿(2ml)和甲烷[2H]01(1ml)中。加入三乙胺(113mg,1.12mmol)的氘代氯仿溶液,搅拌溶液2小时。将溶剂在真空中蒸发并加入少量甲[2H]醇 15 K. W. Ratts, J. Org. Chem., 1972, 37,848。l6 J. N. Shoolery,Svensk kern。Tidskf., 1957,69, 185;N. Obata 和 I. Moritani,公牛。化学SOC.日本, 1966, 39, 1975.被添加到残油中;分离出72毫克黄色固体,6 5.83(s,1 h,=CH)和7.10-8.10(m,10 h,芳香族);mle 269 (M+, 9%)、165 (12)、164 (M+ -105,loo)、163 (8)、136 (19)、135 (7)、134 (7)、105 (lo)、92 (33) 和 77 (23)。[2-2H]-(8)的平衡.-(a)将氧硫杂[2-2H]-(8)在略高于其熔点的120“C下加热30 min;(b)将氧硫唑[2-2H]-(8)在回流苯中加热2 h.两次运行(a)和(b)的产物的lH n.m.r.谱图显示,在氧硫醇体系中,2位和4位之间没有氘的扰动。运行(a)中样品的n.m.r.谱图为发生了一些分解这一事实提供了证据。其他实验表明,当氧硫唑(8)在不同温度下加热时,在140“C下30分钟后分解完成。分解的J.C.S. Perkin I位置产物是一种复杂的混合物,尚未得到进一步研究。热解(8).-氧硫醇(€9,溶于丙酮,在g.1.c上注射。(进样器和塔温分别为275°C和200°C;色谱柱 1.5 m x 3.2 mm,在 Varaport 30 上填充 5% SE-30)。分解产物1,2-二苯甲酰乙烯是溶剂峰后唯一可检测到的化合物。通过与g.1.c上的真实样品进行比较,证明了该结构。和理学硕士感谢瑞典自然科学研究委员会的财政支持。我们感谢瑞典烟草公司的 T. Nishida 博士提供 13C n.m.r. 光谱。81345 收稿日期 19781年3月1日

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号