首页> 外文期刊>mendeleev communications >Formation of heterobinuclear µ-nitrido complexes with a Mn-N-Fe moiety by reaction of nitrido(octaphenyltetraazaporphyrinato)manganese(V) with iron(III) porphyrins
【24h】

Formation of heterobinuclear µ-nitrido complexes with a Mn-N-Fe moiety by reaction of nitrido(octaphenyltetraazaporphyrinato)manganese(V) with iron(III) porphyrins

机译:通过亚硝基(八苯基四氮卟啉)锰(V)与铁(III)卟啉反应形成具有Mn-N-Fe部分的异双核μ-硝基复合物

获取原文
获取外文期刊封面目录资料

摘要

Mendeleev Communications Electronic Version, Issue 5, 1997 (pp. 169–212) Formation of heterobinuclear -nitrido complexes with a Mn–N–Fe moiety by reaction of nitrido(octaphenyltetraazaporphyrinato)manganese(V) with iron(III) porphyrins Pavel A. Stuzhin,*a Mahmud Hamdusha and Heiner Homborgb a Department of Organic Chemistry, State Academy of Chemical Technology, 153460 Ivanovo, Russian Federation.Fax: +7 0932 37 7743; e-mail: stuzhin@icti.ivanovo.su b Instutut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, D-24098 Kiel, Germany Nitrido(octaphenyltetraazaporphyrinato)manganese(V) (NºMnOPTAP) obtained by treatment of chlorine on acido(octaphenyltetraazaporphyrinato) manganese(III) (X)MnOPTAP; X = Cl, AcO, HSO4 in chloroform solution saturated with ammonia, reacts with acido(octaphenyltetraazaporphyrinato)iron(III) (X)FeOPTAP; X = Cl, Br, AcO forming the heterometallic m-nitrido complex m-(MnNFe)(OPTAP)2; m-nitrido complexes with a dissimilar porphyrin ligand on each metal have also been prepared.Binuclear m-nitrido iron complexes of porphyrins,1 tetraazaporphyrins2 and phthalocyanine3,4 can be easily obtained by thermolysis of the corresponding azidoiron(III) complexes.Heating of azido(tetraphenylporphyrinato)iron(III) (N3)FeTPP in the presence of iron or ruthenium phthalocyanines (FePc, RuPc) results in the formation of mixed binuclear m-nitrido complexes (TPP)Fe(m-N)Fe(Pc) and (TPP)Fe(m-N)Ru(Pc).5 It was supposed1,6 that nitrido(tetraphenylporphyrinato)iron(V) (NºFeTPP) is a reactive intermediate in the formation of m-N(FeTPP)2 from (N3)FeTPP.However, due to the extremely high instability of the nitridoiron(V) complexes NºFeTPP was detected7 as a photolysis product of (N3)FeTPP only below 150 K their role in m-nitrido complex formation has not received any direct confirmation as yet. Unlike nitridoiron(V) complexes nitridomanganese(V) complexes of porphyrins8 and phthalocyanines9 are very stable.In order to throw some light on the mechanism of the m-nitrido complex formation, we have obtained stable nitrido(octaphenyltetraazaporphyrinato)- manganese(V) (NºMnOPTAP 3; Scheme 1) and attempted to use it in the synthesis of the heterometallic m-nitrido complexes (Scheme 2). Melting of (E)-1,2-diphenyl-1,2-dicyanoethylene 1 with anhydrous manganese(II) acetate in a 1:1 molar ratio at 270 °C gave acetato(octaphenyltetraazaporphyrinato)manganese(III) (AcO)MnOPTAP 2; yield 85.† NºMnOPTAP 3 was obtained by bubbling chlorine through a cooled (–20 °C) solution of 2 in chloroform saturated with gaseous ammonia (yield 61).‡ Other acidomanganese(III) complexes (X)MnOPTAP (e.g.X = Cl, HSO4) can also be used as a starting material.Complex 2 can bind ammonia as an axial ligand forming hexacoordinated ammine complexes of manganese(III), (AcO)(H3N)MnOPTAP, or on more prolonged exposition of manganese(II), (H3N)2MnOPTAP. Coordination of ammonia to 2 and subsequent conversion of the ammine complexes to NºMnOPTAP under action of chlorine can be followed by UV/VIS spectroscopy (Figure 1). Whereas the spectrum of (AcO)(H3N)MnOPTAP is almost identical with that of 2 Figure 1(a), additional characteristic bands appear at 830 and 886 nm for (H3N)2MnOPTAP Figure 1(b).These ammine complexes can be chlorinated to give, we suppose, unstable intermediate complexes containing N,N-dichloro- † Spectral data for 2: Found (): C, 76.28; H, 4.54; N, 10.49. Calc. for C66H43N8O2Mn (): C, 76.59; H, 4.19; N, 10.83.UV/VIS CHCl3, lmax/nm (log e): 285 (4.66), 331sh, 414 (4.56), 475 (4.39), 613sh, 665 (4.60). Camenzind and Hill11 have reported the preparation of octaphenyltetraazaporphyrinatomanganese(II) from 1 and manganese powder with low yield (5.7); no spectral data have been reported for this compound. ‡ Spectral data for 3: Found (): C, 77.76; H, 4.18; N, 12.55.Calc. for C64H40N9Mn (): C, 77.65; H, 4.07; N, 12.73. FD-MS m/z: NºMnOPTAP+ (990.4, 12); MnOPTAP+ (975.3, 100). UV/VIS CHCl3, lmax/nm (log e): 270sh, 345sh, 361 (4.65), 447 (4.22), 577 (4.12), 601sh, 629 (4.91). amidomanganese(III), (Cl2N)MnOPTAP, or N-chloronitrenomanganese( IV), ClN=MnOPTAP, which easily split off chlorine forming stable nitridomanganese(V) complex 3 Figure 1(c).In the absence of ammonia complex 2 is oxidized irreversibly with chlorine producing colourless products. A substantial hypsochromical shift of the p®p* transitions of the macrocycle observed for 3 as compared with 2 is in agreement with strengthening of the p-donation effect expected for d2 complexes such as NºMnOPTAP. The structure of 3 is confirmed by the presence in the mass spectrum of a molecular ion peak of NºMnOPTAP+ at m/z = 990.4 and by the appearance of the MnºN stretching vibration as a weak band at 1054 cm–1 in the IR spectrum and as a medium-strong line at 1058 cm–1 in the resonance Raman spectrum.The heterometallic m-nitrido complex 5, m-(MnNFe)- (OPTAP)2, was obtained by reaction of the nitridomanganese(V) complex 3 with chloroiron(III) complex 4, (Cl)FeOPTAP,10 in a boiling benzene solution (3:4 = 1:1.5 molar ratio) (Scheme 2).The m-nitrido complex 5 was chromatographically purified and separated from an admixture of m-oxodimer O(FeOPTAP)2, formed partially from 4 (neutral Al2O3, eluent CHCl3, yield of 5 23).§ The Mn/Fe ratio determined by a flame photometry § Spectral data for 5: Found (): C, 77.84; H, 3.95; N, 12.03; Mn, 2.72; Fe, 2.6.Calc. for C128H80N17MnFe (): C, 78,16; H, 4.10; N, 12.11; Mn, 2.79; Fe, 2.84. FD-MS m/z: NºMnOPTAP+ (990.4, 2.9), FeOPTAP+ (976.3, 89), MnOPTAP+ (975.3, 100). UV/VIS CHCl3, lmax/nm (log e): 345 (4.81), 437sh, 583 (4.55), 642 (4.66). m N N N N N N N N Mn Ph Ph Ph Ph Ph Ph Ph Ph OAc C Ph C Ph N N N N N N N N N N Mn Ph Ph Ph Ph Ph Ph Ph Ph N Mn(OAc)2 270 °C NH3 then Cl2 –20 °C 1 2 2 3 (AcO)MnOPTAP NºMnOPTAP Scheme 1Mendeleev Communications Electronic Version, Issue 5, 1997 (pp. 169–212) method and the CHN elemental analysis data for 5 are in reasonable agreement with the proposed formula, m-(MnNFe)- (OPTAP)2. The mass spectrum of 5 obtained by a field desorption method contains mass peaks (in m/z) corresponding to the monomer constituents of the mixed m-nitrido complex (NºMnOPTAP+ 990.4; MnOPTAP+ 975.3; FeOPTAP+ 976.3), but no molecular ion peak expected for C128H80N17MnFe at m/z = 1965.6 has been detected.Formation of 5 can be easily monitored by UV/VIS spectroscopy: characteristic absorption bands of the initial complexes 3 (629 nm) and 4 (710 nm) disappear and a broad doublet (642, 583 nm) appears.Such splitting of the Q-band, being a result of excitonic interactions of the adjacent p-systems, is characteristic of binuclear single atom bridged complexes. The UV/VIS spectrum of the mixed Mn–Fe m-nitrido complex 5 m-(MnNFe)(OPTAP)2, Figure 2(c) is similar to the spectrum of the homobinuclear m-nitridodiiron complex m-N(FeOPTAP)2, Figure 2(d), but the maxima of the Q-band envelope are bathochromically shifted.No metal-axial ligand stretching vibrations characteristic of the initial complexes 3 and 4 (nMnºN = 1054 cm–1 for 3 and nFe–Cl = 310 cm–1 for 4) are present in the IR spectrum of 5 and a medium-weak band at 918 cm–1 appears likely to be associated with the MnNFe bridge (FeNFe absorbs at 920 cm–1). The dinuclear identity of 5 has also been confirmed by its reaction with acids HX (HX = HCl, H2SO4, AcOH, CCl3COOH) which causes decomposition to the mononuclear complexes of Mn and Fe (X)MnOPTAP and/or NºMnOPTAP and (X)FeOPTAP, each of which can be separated by thin-layer chromatography and identified by UV/VIS spectroscopy.It has been verified that reaction of NºMnOPTAP with bromoiron(III), acetatoiron(III) and m-oxodiiron(III) derivatives of octaphenyltetraazaporphine (Br)FeOPTAP, (AcO)FeOPTAP and m-O(FeOPTAP)2 also leads to 5.Mixed Mn–Fe m-nitrido species containing dissimilar macrocyclic ligands bound to each metal can be obtained by coupling of the corresponding nitridomanganese(V) and iron(III) complexes, thus reaction of NºMnOPTAP with (AcO)FeTPP gives (OPTAP)Mn(m-N)Fe(TPP).Whether the m-(MnNFe) bridge has an asymmetrical bond distribution (MnIII–N=FeIV or MnIV=N–FeIII as shown in Scheme 2) or its structure is more symmetrical (Mn N Fe) similar to the (Fe N Fe) bridge in m-N(FeOPTAP)2 2 is not yet clear. Physicochemical properties of mixed Mn–Fe m-nitrido complexes of porphyrins as well as details of the mechanism of their formation are presently under investigation.Financial support from the Deutscher Akademischer Austauschdienst (Bonn, Germany) is gratefully acknowledged. We thank Mrs. U. Cornelissen (Christian-Albrechts-Universität zu Kiel, Germany) for FT-IR and resonance Raman measurements and Dr. U. Ziener (Max-Planck-Institut für Polymerforschung, Mainz, Germany) for obtaining the mass spectra. References 1 D. A. Summerville and I.A. Cohen, J. Am. Chem. Soc., 1976, 98, 1747. 2 P. A. Stuzhin, L. Latos-Grazynski and A. Jezierski, Transition Met. Chem., 1989, 14, 341. 3 V. L. Goedken and C. Ercolani, J. Chem. Soc., Chem. Commun., 1984, 378. 4 B. J. Kennedy, K. S. Murray, H. Homborg and W. Kalz, Inorg. Chim. Acta, 1987, 134, 19. 5 C. Ercolani, J. Jubb, G. Pennesi, U. Russo and G. Trigiante, Inorg.Chem., 1995, 34, 2535. (a) (b) (c) 2 1 0 Absorbance 400 600 800 1000 l/nm Figure 1 UV/VIS spectra of (a) (AcO)MnOPTAP in chloroform (3.5×10–5 M); (b) after saturation with ammonia at –20 °C; (c) after bubbling of chlorine. N N N N N N N N Fe Ph Ph Ph Ph Ph Ph Ph Ph N Ph Ph Ph Ph Ph Ph Ph Ph Mn N N N N N N N N NºMnOPTAP (Cl)FeOPTAP 3 4 m-(MnNFe)(OPTAP)2 Scheme 2 5 benzene reflux Figure 2 UV/VIS spectra of (a) NºMnOPTAP; (b) (Cl)FeOPTAP; (c) m-(MnNFe)(OPTAP)2 and (d) m-N(FeOPTAP)2 in chloroform. (a) (b) (c) (d) 104e 8 6 4 2 400 600 800 l/nm ... ... ... ...Mendeleev Communications Electronic Version, Issue 5, 1997 (pp. 169–212) 6 J. W. Buchler and C. Dreher, Z. Naturforsch., 1984, 39b, 222. 7 W.-D. Wagner and K. Nakamoto, J. Am. Chem. Soc., 1988, 110, 4044. 8 J. W. Buchler, C. Dreher and K. L. Lay, Z. Naturforsch., 1982, 37b, 1155. 9 H. Grunewald and H. Homborg, Z. Naturforsch., 1990, 45b, 483. 10 P. A. Stuzhin, M. Hamdush and U. Ziener, Inorg. Chim. Acta, 1995, 236, 131. 11 M. J. Camenzind and C. L. Hill, Inorg. Chim. Acta, 1985, 99, 63. Received: Cambridge, 2nd May 1997 Moscow, 3rd June 1997; Com. 7/02979I
机译:Mendeleev Communications Electronic Version,第 5 期,1997 年(第 169-212 页) 通过次氮(八苯基四氮卟啉)锰(V)与铁(III)卟啉的反应形成具有 Mn-N-Fe 部分的异双核-硝基复合物 Pavel A. Stuzhin,*a Mahmud Hamdusha 和 Heiner Homborgb a 国家化学技术学院有机化学系,153460 Ivanovo,俄罗斯联邦.传真: +7 0932 37 7743;电子邮件: stuzhin@icti.ivanovo.su b Instutut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, D-24098 Kiel, Germany Nitrido(octaphenyltetraazaporphyrinato)manganese(V) (NºMnOPTAP) 通过对酸(八苯基四氮卟啉)锰(III)[(X)MnOPTAP]的氯处理获得;X = Cl, AcO, HSO4] 在氨饱和的氯仿溶液中,与酸(八苯基四氮杂卟啉)铁 (III) [(X)FeOPTAP;X = Cl, Br, AcO] 形成异金属 m-nitrido 配合物 m-(MnNFe)(OPTAP)2;还制备了在每种金属上具有不同卟啉配体的m-nitrido复合物。卟啉、1 四氮杂卟啉2 和酞菁 3,4 的双核 m-次氮铁配合物可以通过相应的叠氮铁 (III) 配合物的热解轻松获得。叠氮基(四苯基卟啉)铁(III)[(N3)FeTPP]在铁或钌酞菁(FePc,RuPc)存在下加热导致混合双核m-硝配合物(TPP)Fe(m-N)Fe(Pc)和(TPP)Fe(m-N)Ru(Pc)的形成。5 据推测1,6,次氮(四苯基卟啉)铁(V)(NºFeTPP)是从(N3)FeTPP形成m-N(FeTPP)2的反应性中间体,然而,由于次氮铁(V)配合物的极高不稳定性[检测到NºFeTPP7作为(N3)FeTPP的光解产物仅在150 K以下],它们在m-次氮配合物形成中的作用尚未得到任何直接证实。与次氮铁(V)配合物不同,卟啉8和酞菁9的次卟锰(V)配合物非常稳定。为了阐明m-nitrido复合物形成的机制,我们获得了稳定的nitrido(八苯基四氮卟啉)-锰(V)(NºMnOPTAP 3;方案1),并试图将其用于合成异金属间次氮配合物(方案2)。(E)-1,2-二苯基-1,2-二氰基乙烯1与无水乙酸锰(II)在270°C下以1:1的摩尔比熔化得到乙酰基(八苯基四氮卟啉)锰(III)[(AcO)MnOPTAP 2;产率85%].† NºMnOPTAP 3 是通过在用气态氨饱和的氯仿中通过冷却 (–20 °C) 2 溶液鼓泡氯气获得的(产率 61%)。 其他酸锰(III)络合物 (X)MnOPTAP(例如X = Cl, HSO4)也可用作起始原料。配合物 2 可以作为轴向配体结合氨,形成锰 (III)、(AcO)(H3N)MnOPTAP 的六配位氨络合物,或更长时间地暴露锰 (II)、(H3N)2MnOPTAP。在氯的作用下,氨与2的配位以及随后在氯的作用下将氨络合物转化为NºMnOPTAP,可以进行紫外/可见光谱分析(图1)。虽然(AcO)(H3N)MnOPTAP的光谱与2的光谱几乎相同[图1(a)],但(H3N)2MnOPTAP的830和886nm处出现了其他特征带[图1(b)]。这些氨络合物可以被氯化,得到含有N,N-二氯-的不稳定中间络合物† 2的光谱数据: 发现 (%): C, 76.28;H,4.54;N,10.49。计算值 C66H43N8O2Mn (%): C, 76.59;H,4.19;N, 10.83.UV/VIS [CHCl3, lmax/nm (log e)]: 285 (4.66), 331sh, 414 (4.56), 475 (4.39), 613sh, 665 (4.60).Camenzind和Hill11报道了从1和锰粉制备八苯基四氮卟啉锰(II)的低收率(5.7%);目前尚无关于该化合物的光谱数据报道。‡ 3的光谱数据: 发现 (%): C, 77.76;H,4.18;N, 12.55.计算值 for C64H40N9Mn (%): C, 77.65;H,4.07;N,12.73。FD-MS m/z:NºMnOPTAP+(990.4,12%);MnOPTAP+(975.3,100%)。紫外可见分光光度计 [CHCl3, lmax/nm (log e)]: 270sh, 345sh, 361 (4.65), 447 (4.22), 577 (4.12), 601sh, 629 (4.91).氨基锰(III)、(Cl2N)MnOPTAP或N-氯硝锰(IV)、ClN=MnOPTAP,它们很容易分解氯,形成稳定的次羟基锰(V)络合物3[图1(c)]。在没有氨的情况下,络合物2被氯不可逆地氧化,产生无色产物。与 2 相比,观察到 3 个大周期的 p p* 转变的显着催眠变色与预期的 d2 复合物(如 NºMnOPTAP)的 p®供体效应的增强一致。在m/z = 990.4时,质谱中存在NºMnOPTAP+分子离子峰,以及MnºN拉伸振动在红外光谱中作为1054 cm–1处的弱带和共振拉曼光谱中1058 cm–1处的中强线,证实了3的结构。异金属间氮配合物5,m-(MnNFe)-(OPTAP)2,由次氮锰(V)配合物3与氯铁(III)配合物4,(Cl)FeOPTAP,10在沸腾的苯溶液(3:4 = 1:1.5摩尔比)中反应得到(方案2)。对m-nitrido配合物5进行色谱纯化,并从m-氧代二聚体O(FeOPTAP)2的混合物中分离,m-氧代二聚体O(FeOPTAP)2部分由4(中性Al2O3,洗脱剂CHCl3,产率为5 23%)形成。H,3.95;N, 12.03;锰,2.72;Fe, 2.6.计算值 for C128H80N17MnFe (%): C, 78,16;H,4.10;N,12.11;锰,2.79;铁,2.84。FD-MS m/z:NºMnOPTAP+(990.4,2.9%),FeOPTAP+(976.3,89%),MnOPTAP+(975.3,100%)。紫外可见分光光度计 [CHCl3, lmax/nm (log e)]: 345 (4.81), 437sh, 583 (4.55), 642 (4.66).m n n n n mn Ph Ph OAc C Ph n mn mn ph n mn(OAc)2 270 °C NH3 然后 Cl2 –20 °C 1 2 2 3 (AcO)MnOPTAP NºMnOPTAP 方案 1门捷列夫通信电子版, 1997 年第 5 期(第 169–212 页)方法和 5 的 CHN 元素分析数据与提出的公式 m-(MnNFe)- (OPTAP)2 合理一致。通过场解吸法获得的质谱图5包含与混合m-次氮配合物(NºMnOPTAP+ 990.4;锰锑+ 975.3;FeOPTAP+ 976.3),但未检测到 C128H80N17MnFe 在 m/z = 1965.6 时的分子离子峰。紫外可见分光光度计可以很容易地监测5的形成:初始配合物3(629 nm)和4(710 nm)的特征吸收带消失,出现宽双峰(642,583 nm)。Q 带的这种分裂是相邻 p 系统激子相互作用的结果,是双核单原子桥接配合物的特征。混合Mn-Fe m-硝基复合物5 [m-(MnNFe)(OPTAP)2,图2(c)]的紫外可见光谱与同核m-硝基二铁配合物[m-N(FeOPTAP)2,图2(d)]的光谱相似,但Q波段包络的最大值是深色位移的。在 5 的红外光谱中不存在初始配合物 3 和 4 的金属轴向配体拉伸振动特征(nMnºN = 1054 cm–1 表示 3,nFe–Cl = 310 cm–1 表示 4),并且 918 cm–1 处的中弱带似乎可能与 MnNFe 桥相关(FeNFe 在 920 cm–1 处吸收)。5 的双核特性也已通过它与酸 HX(HX = HCl、H2SO4、AcOH、CCl3COOH)的反应得到证实,该反应导致分解为 Mn 和 Fe [(X)MnOPTAP 和/或 NºMnOPTAP 和 (X)FeOPTAP] 的单核配合物,其中每一种都可以通过薄层色谱分离并通过紫外可见分光光度计鉴定。已经证实,NºMnOPTAP与八苯基四氮杂卟吩[(Br)FeOPTAP,(AcO)FeOPTAP和m-O(FeOPTAP)2]的溴铁(III)、乙酰铁(III)和间氧代二铁(III)衍生物的反应也导致了5.通过相应的次氮锰(V)和铁(III)配合物的偶联,可以得到含有与每种金属结合的不同大环配体的混合Mn-Fe m-nitrido物质, 因此,NºMnOPTAP与(AcO)FeTPP的反应得到(OPTAP)Mn(m-N)Fe(TPP)。m-(MnNFe)桥是否具有不对称的键分布(MnIII-N=FeIV或MnIV=N-FeIII,如方案2所示),或者其结构更对称(Mn,N Fe),类似于m-N(FeOPTAP)2 2中的(Fe,N Fe)桥,目前尚不清楚。目前正在研究卟啉混合Mn-Fe m-nitrido配合物的理化性质及其形成机制的细节。感谢德国波恩学院的财政支持。我们感谢 U. Cornelissen 女士(德国 Christian-Albrechts-Universität zu Kiel)的 FT-IR 和共振拉曼测量,以及 U. Ziener 博士(德国美因茨的马克斯-普朗克聚合物研究所)获得质谱图。参考文献 1 D. A. Summerville and I.A. Cohen, J. Am. Chem. Soc., 1976, 98, 1747.2 P. A. Stuzhin、L. Latos-Grazynski 和 A. Jezierski,《过渡会议》。化学, 1989, 14, 341.3 V. L. Goedken 和 C. Ercolani, J. Chem. Soc., Chem. Commun., 1984, 378.4 B.J.肯尼迪、K.S.默里、H.霍姆堡和W.卡尔茨,伊诺格。噗噗。学报, 1987, 134, 19.5 C. Ercolani, J. Jubb, G. Pennesi, U. Russo 和 G. Trigiante, Inorg.Chem., 1995, 34, 2535.(a) (b) (c) 2 1 0 吸光度 400 600 800 1000 l/nm 图1 (a) (AcO)MnOPTAP在氯仿中的紫外可见分光光度图(3.5×10–5 M);(b)在-20°C下用氨饱和后;(c) 氯气冒泡后。N N N N N N N N Fe Ph Ph Ph Ph Ph Ph Ph Ph N Ph Ph Ph Ph Ph Ph Ph Ph Mn N N N N N N N N NºMnOPTAP (Cl)FeOPTAP 3 4 m-(MnNFe)(OPTAP)2 Scheme 2 5 benzene reflux Figure 2 UV/VIS spectra of (a) NºMnOPTAP;(b) (Cl)FeOPTAP;(c) m-(MnNFe)(OPTAP)2 和 (d) m-N(FeOPTAP)2 的氯仿溶液。(a) (b) (c) (d) 104e 8 6 4 2 400 600 800 l/nm ...Mendeleev Communications Electronic Version,第 5 期,1997 年(第 169-212 页) 6 J. W. Buchler 和 C. Dreher,Z. Naturforsch.,1984 年,39b,222。7 W.-D.Wagner 和 K. Nakamoto, J. Am. Chem. Soc., 1988, 110, 4044.8 J. W. Buchler, C. Dreher 和 K. L. Lay, Z. Naturforsch., 1982, 37b, 1155.9 H. Grunewald 和 H. Homborg, Z. Naturforsch., 1990, 45b, 483.10 P. A. Stuzhin, M. Hamdush 和 U. Ziener, Inorg.噗噗。学报, 1995, 236, 131.11 M. J. Camenzind 和 C. L. Hill, Inorg.噗噗。学报, 1985, 99, 63.收稿日期: 剑桥, 1997-05-02 莫斯科, 1997-06-03;通讯 7/02979I

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号