...
首页> 外文期刊>The FASEB Journal >Characterization of sonic hedgehog as a novel NF-kappaB target gene that promotes NF-kappaB-mediated apoptosis resistance and tumor growth in vivo.
【24h】

Characterization of sonic hedgehog as a novel NF-kappaB target gene that promotes NF-kappaB-mediated apoptosis resistance and tumor growth in vivo.

机译:Characterization of sonic hedgehog as a novel NF-kappaB target gene that promotes NF-kappaB-mediated apoptosis resistance and tumor growth in vivo.

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

To explore mechanisms controlling sonic hedgehog (Shh) expression in human cancers, we investigated regulation of Shh by the transcription factor NF-kappaB. We identify putative NF-kappaB binding sites in the human Shh promoter region that specifically bind NF-kappaB complexes. Further, NF-kappaB activation by tumor necrosis factor alpha (TNF-alpha) or p65 overexpression stimulates Shh promoter activity and p65 binds to Shh promoter in vivo. NF-kappaB-mediated transcriptional activation of Shh is mapped to a minimal NF-kappaB consensus site at position +139 of Shh promoter. NF-kappaB activation results in increased Shh mRNA and protein expression in vitro and, notably, also in vivo in a genetic mouse model of inducible NF-kappaB activity. Specific NF-kappaB inhibition by inhibitory NF-kappaBalpha (Ikappa-Balpha) superrepressor or p65 knockdown inhibits NF-kappaB-induced Shh promoter activation and Shh expression. NF-kappaB-mediated Shh expression promotes proliferation and confers resistance to TRAIL-induced apoptosis. Silencing of Shh prevents NF-kappaB-stimulated proliferation, while the addition of Shh rescues the proliferation defect imposed by NF-kappaB inhibition. Notably, NF-kappaB-stimulated tumor growth is significantly impaired by Shh knockdown in an in vivo model of pancreatic cancer. By demonstrating that NF-kappaB regulates Shh expression, which contributes to NF-kappaB-mediated proliferation and apoptosis resistance in vitro and in vivo, our findings have important implications to target aberrant Shh expression in human cancers.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号