首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Pyrrolopyrimidine nucleosides. Part XI. Influence of amino-groups at C-4 and C-6 or an amino-group at C-6 on the reactivity of a 5-cyano-group in pyrrolo2,3-dpyrimidine nucleosides
【24h】

Pyrrolopyrimidine nucleosides. Part XI. Influence of amino-groups at C-4 and C-6 or an amino-group at C-6 on the reactivity of a 5-cyano-group in pyrrolo2,3-dpyrimidine nucleosides

机译:吡咯嘧啶核苷。第十一部分.C-4 和 C-6 的氨基或 C-6 的氨基对吡咯并2,3-d嘧啶核苷中 5-氰基的反应性的影响

获取原文
获取外文期刊封面目录资料

摘要

1975 1253Pyrrolopyrimidine Nucleosides. Part XI. Influence of Amino-groups atC-4 and C-6 or an Amino-group at C-6 on the Reactivity of a 5-Cyano-group in PyrroIo2,3=dpyrimidine NucleosidesBy Karl H. Schram and Leroy B. Townsend," Department of Biopharmaceutical Sciences and DepartmentThe syntheses of 6-amino-7- (~-~-ribofuranosyl)pyrrolo2,3-dpyrimidine-5-carbonitrile (7) and its 4.6-diarnino-analogue (1 2) are described. Nucleophilic addition to the 5-cyano-group of both (7) and (1 2) was found to bemore difficult under both acidic and basic conditions than addition to the nitrile group of toyocarnycin (3) or7-(~-~-ribofuranosyl)pyrrolo2,3-~pyr~m~d~ne-5-carbonitr~le (1 ). The reaction of hydrazine with 6-bromo-7- (p-D-ribofuranosyl) pyrrolo2,3-d pyrimidine-5-carbonitrile, which furnished a tricyclic nucleoside, i s discussed.of Chemistry, University of Utah, Salt Lake City, Utah 841 12, U.S.A.WE have demonstratedl-4 that a 4-amino- or 4-OXO- ring since the rings are somewhat compartmentalized.6group in certain 7-( p-~-ribofuranosyl)pyrrolo2,3-d- Therefore, an amino-group on the pyrrole ring would bepyrimidine-Ei-ca~bonitriles e.g.(1)-(3) can have adeactivating effect towards nucleophilic addition to thecyano-group under both basic and acidic conditions.Although an amino-group in the pyrimidine ring in-fluences the susceptibility of the 5-cyano-group in thethe electron density at the cyano-group, the electroniceffects in this case are more pronounced in the pyrimidinepreceding paper.1971, 4767.in the press.end, J . Ovg. Chem., 1970,35, 236.y-$+j H N b,R R (3 Rpyrrole ring towards nucleophilic attack by increasing ( 1 ) (21 ( 3 )R = p - D - ribofuranosylpart x, €3- c. Hinshaw, K. H. Schram, and L. €3. Townsend, significant deactivating effect2 K. H. Schram and L. B. Townsend, Tetrahedron Letters, L. B. Townsend and G. H. Milne, Ann. New York Acad. Sci.,3 B. C. Hinshaw, J. F. Gerster, R K. Robins, and L. B. Towns- 6 A. Albert, ' Heterocyclic Chemistry,' Oxford Universityexpected to have aPress, New York, 19681254 J.C.S. Perkin Ion the cyano-group than an amino-group on the pyriini-dine ring. This prompted us to synthesize analogues oftoyocamycin (2) with the amino-group on the pyrrolerather than the pyrimidine moiety, and to study theeffect of this transformation on the reactivity of the5-cyano-group.Although there have been reports of electrophilichalogenation reactions of certain 4-substituted pyrrolo-pyrimidine nucleosides 6 and of toyocamycin 7 (2), electro-philic substitution in a pyrrolo2,3-jpyrirnidine nucleo-side with only a strongly electron-attracting substituent(CN, NO,, etc.) at C-5 has not been reported.Treatmentof compound (1) with water saturated with bromine gavethe 6 bromo-derivative (4), the lH n.m.r. spectrum ofwhich showed only two peaks (6 9.05 and 9.30) whichcould be assigned1*6 to aromatic protons. The i.r,Treatment of (4) with liquid ammonia in a sealedvessel at 110-120” for 12 h resulted in displacement* ofthe 6-bromo-group to afford the 6-amino-compound (7)in 74 yield vm 2 200 cm-l; 6 7.9br (2H, exchangeable,6-NH,), 8.6 (H-4), and 9.0 (H-2).Additional evidencethat nucleophilic displacement had occurred was pro-vided by a large bathochromic shift in the U.V. spectrum(Table). The reactivity of the cyano-group of (7) to-wards various nucleophiles was then studied.Treatment of (7) with hydrogen peroxide in base gavean isomer of sangivamycin, 6-amino-7- ( P-D-ribofurano-~yl)pyrr0lo2,3-dpyrimidine-5-carboxamide (8) no v m ;6 6-9 (6-NHJ and 7.95 (CONH,). T.1.c. showed thepresence of at Ieast two highly fluorescent minor products.The low yield of (8) (38) in comparison with the con-version of toyocamycin into sangivamycin (65) lo underNH7(5)R = p- D - ribofuranosylSCHEME Zspectrum indicated retention of the cyano-group.The reaction of (4) with hydrazine could result in eitheraddition to the nitrile function to produce the carbox-amidrazone derivative or displacement of the bromo-group to form the 6-hydrazino-compound.A previousstudy has shown that the second pathway is preferredwith 6-bromotoyocamycin. However, the presence ofan amino-group at C-4 could deactivate the nitrilefunction of 6-bromotoyocamycin towards nucleophilicaddition in comparison to the cyano-group of (4). Thepossibility of competing reactions was therefore en-visaged.The reaction of hydrazine with (4) in fact afforded only(t-1.c.) the 6-hydrazino-compound (5) vm 2 200 crn-l;6 8.60 (s) and 8.57 (s) (H-2 and H-4), 6.35 (d, H-l’), 3.4-5.6 (carbohydrate protons 8 ) , and 5.68br (3H, exchange-able, NHoNH,).Ring closure of (5) to afford 3-arnino-8-( P-D-ribofurano-showing no VCN, was effected by boiling water.The lHn.m.r. spectrum of (6) showed peaks for the aromatic(6 9.45 and 9.25) and carbohydrate protons, lacked thehydrazino-signal 6 5.7, and contained a broad peak in the6 7-8.7 region assigned to the 3-amino-group and thepyrazole proton. This ring closure reaction corroboratedthe site of bromination of (4).* Displacement of a 6-bromo-group in a pyrrolopyrimidinenucleoside has been accomplished by using methanolic ammoniain a sealed vesseI.9J. F. Gerster, B. Carpenter, R. K. Robins, and L. B. Towns-end, J. Medicin.Chem., 1967, 10, 326.R. L. Tolman, R. K. Robins, and L. B. Townsend, J . Hetero-cyclic Chem., 1971, 8, 703.s yl) p~~azolo4’,3’ :4,5 pyrrolo 2,3-d J pyrimidine (6) 3similar conditions indicated that side readions wereoccurring. Since an amino-group in the 6-position of aJ ( 8 ) NH (91R = p-u- ribofuranosylSCHEME 2pyrrolo2,3-dJpyrimidine resides on an electron-rich ringsystem,s it is possible that N-oxidation was occurring8 L. B. Townsend, in ’ Synthetic Procedures in Nucleic AcidChemistry,’ vol. 11, eds. W. W. Zorbach and R. S. Tipson, Wiley,New York, 1973, pp. 267-398.9 M. Bobek, R. L. Whistler and A. B M , J. Mediaot. Chmz.,1972.15, 168.10 R. L. Tolman, R. K. Robins, and L. B. Towmend, J . Amev.Chem. Soc., 1968, 90, 5241975since aniline is oxidized to azobenzene and pyridine isoxidized to pyridine N-oxide by peroxide in base.uU.V.spectra of some pyrrolopyrimidine nucleosidesPH 1 MeOH pH 11Corn- c--Amax ./nm274226303246320261299';;;I302260242330277246293(;;;I304278ax. a9.017.48.021.17.36.99-629.211.816.831.018-415.428.016.014.613-018.115.3h a x . Inm2743 14240(320)248311279(252)236 (;A;)267236338270238292363P;;)6.6 31211-3 232 w;)'f2w;)9.010-3 30426- 1 23214.914.3 23421.421.5 33812.0 26824.6 23824.2 29016.0 36222-823517-9 293(;;;IEmax.10.18-015.017.39-310.023.017-125-120.615.446-019.913.621.216.418.2a E x 10-3.6 Shoulders in parentheses.The reduced reactivity of the cyano-group of (7) incomparison with that of (1) or (2) is clearly shown in thewith hydrogen sulphide in a sealed vessel for 12 h at 120-130".Since the nitrile group of (5) showed a reduced tendencytowards nucleophilic attack under basic conditionsit was e x p t e d that reactions performed under acidicconditions would be extremely slow. The initial reac-tion of a nitrile group under acidic conditions is generallythought to be protonation of the lone pair of electrons onthe nitrogen of the nitrile gr0~p.l~ If protonation of the6-amino-group occurred, this would be expected to retardor prevent protonation at the nitrile. This may ex-plain why the attempted conversion of (7) into the imi-date (10) by hydrogen chloride in ethanol, conditionsidentical with those used to convert toyocamycin (2) intoan imidate, was unsuccessful, even with a prolongedreaction time.Thus transposition of the 4-amino-groupof toyocamycin (2) to the 6-position produces a definitedeactivating effect on the cyano-group towards nucleo-philic attack under both acidic and basic conditions.This prompted us to study the effect of two amino-groups, one in the pyrimidine ring at C-4 and another inthe pyrrole ring at C-6. It was considered that thiswould further decrease the reactivity of the cyano-grouptowards nucleophilic addition.The reaction of 6-brornotoyocamycin lo (1 1) with liquidammonia under conditions similar to those used for thepreparation of (7) gave 6-aminotoyocamycin (12) in 74SSCHEME 3preparation of the thioamide (9).Treatment of (7)with pyridine, triethylamine, and hydrogen sulphideunder conditions essentially identical with those reported8for the conversion of (2) into a 5-thioamide produced noreaction. A recent report l2 states that nitriles unreactiveunder the above conditions can be converted into thio-amides by dimethylformamide, dimethylamine, andhydrogen sulphide. Treatment of (7) in this way gavethe thioamide (9), but in very low yield (300" (Found: C, 41-15; H, 4.5; N, 24.2.Cl,Hl,C1N,04 requires C, 41.0; H, 4.5; N, 23.95).6-A mino- 7- (p-~-ribofuranosyl)pyrrolo 2,3-dpyrimidine-5-carbonitrile (7) .-Method A . The 6-bromo-compound (4)(1.0 g ) and methanolic ammonia (saturated previously at- 5") (75 ml) were mixed and heated at 110-1 15" in a sealedvessel for 16 h.T.1.c. showed a mixture of two majorproducts, RF 0.8 and 0-5, which were bright blue under U.V.light (254 nm) . The mixture was dissolved in the minimumof boiling methanol and kept at 5" for 18 11. The tan crystalswere filtered off and air-dried to yield compound (7) (250 mg,30y0), m.p. 260-261" (Found: C, 49.2; H, 4-55; N, 24.1.Cl,Hl,NB04 requires C, 49-15; H, 4.45; N, 24.05).Liquid ammonia (ca. 3 ml) was added to the6-bromo-compound (4) (680 mg) in a steel vessel. Thevessel was sealed, placed in an oil-bath preheated to 100-llOo, and then heated a t that temperature for 12 h. Theresidue left after evaporation of the excess ammonia wastriturated with methanol (20 ml) at room temperature.The insoluble yellow solid was filtered off and air-dried togive compound (7) (70), identical mixed m.p., i.r.and U.V.spectra data, RF ( O - S ) with that prepared by method A.6-Amino-7- (P-~-ribofuranosyl)fiyrrolo2 , 3-dlpyrimidine-5-carboxamide (8) .-Compound (7) (200 mg), concentratedammonium hydroxide (10 ml), and 30 hydrogen peroxide(2 ml) were mixed and stirred at room temperature for 2 hand then kept at 5" for 12 h. The white precipitate wasfiltered off and recrystallized from the minimum of water tol6 J. M. Bobbitt and D. A. Scola, J . Oyg. Chem., 1960, 25, 561.l7 J. M. Bobbitt and R. E. Doolittle, J . Org. Chem., 1964, 29,H, 4.5; N, 27*45y0).Method B.2298.A. Galat, J . Amer. Chem.SOC., 1948, 70, 39461975give conzpound (8) (120 mg, 38y0), m.p. 257-258" (decomp.)(Found: C, 46.4; H, 4-85; N, 22.6. C,,H,,N,O, requiresC, 46.6; H, 4.85; N. 22.65).6-Amino-7- (13-D-rib0 furanosyl)pyrrolo 2,3-dpyrimidine-5-thiucarbuxamide (9) .-Compound (7) (500 mg) was addedto a solution containing sodium hydrosulphide (200 mg) inmethanol (20 ml) which had been saturated a t room tem-perature with hydrogen sulphide for 40 min. The mixturewas placed in a steel vessel, and the vessel was sealed, heateda t 110-120" for 12 h, then cooled to room temperature.The methanol was removed under reduced pressure and theresidue was dissolved in the minimum of water and keptat 5" for 12 h. The pale orange precipitate was filtered offand air-dried to give compound (9) (120 mg, 21y0), m.p.237"(Found: C, 43-0; H, 4.8; N, 20.85. C,,H,,N,O,S, 0-5H20 requires C, 43.1; H, 4.8; N, 20-95y0).4,6-Diamino-7- ( P-D-ribo furanosyl)pyrrolo 2,3-dpyr imi-dine-5-carbonitrile (6-Aminotoyocamycin) ( 12) .-6-Bromo-toyocamycin (1 1) (200 mg) was added to liquid ammonia(ca. 5 ml) in a steel vessel. The sealed vessel was placed ina preheated (100-110") oil-bath and heated for 22 h a t100-110". The vessel was cooled in ice-water and theammonia was allowed to evaporate. The residue was tri-turated with methanol (20 ml) at room temperature. Thewhite, methanol-insoluble powder was filtered off, recrys-tallized from the minimum of water, and dried in vacuo a t80" for 12 h to give compound (12) (120 mg, 72), m.p.258-260" (decomp.) (Found: C, 44-4; H, 4.95; N, 25.85.C,,H,4N,04,H20 requires C, 44.45; H, 4-95; N, 25.95).4,6-Diamino-7- (P-o-ribo furanosyl)pyrrolo2,3-dpyr imi-dine-5-thiscarboxamide (6-Avninothiosangivamycin) ( 13) .-Amixture of 6-aminotoyocamycin (1 2) (300 mg), sodiumhydrosulphide (100 mg), and methanol (20 ml) (saturated a troom temperature for 45 min with hydrogen sulphide) was1257heated a t 120-130° for 16 h in a sealed vessel and thenallowed to cool to room temperature.The crystals werefiltered off, recrystallized from the minimum of water, anddried under reduced pressure a t 80' for 12 h to give com-powzd (13) (240 mg, 73), m.p. 246-247" (Found: C,42.25; H, 5.0; N, 24.5. C,,H,,N,O,S requires C, 42.35;H, 4.7; N, 24.7).4,6-Diavnino-7- (~-~-ribofuranosyZ)pyrrolo2,3-d~yrimi-dine-5-carboxamide (6-Aminosangivamycin) ( 15) .-Method A .A mixture of 6-aminotoyocamycin (12) (1.1 g) andhydroxylamine Is (1.1 g) in ethanol (80 ml) was heated a treflux temperature for 16 h. The solid was filtered off,recrystallized from the minimum amount of water, anddried under reduced pressure a t 80" for 5 h to give compound(15) (880 mg, 75), m.p. 268-269" (Found: C, 44-2; H,4.75; N, 25-8. C,2H15N60 requires C, 44.45; H, 4-95; N,25.9'70).Method B. 6-Bromosangivamycin (14) (1.0 g) was addedto liquid ammonia (ca. 5 ml) and the mixture was heated a t110-120° in a sealed vessel for 16 h. After removal of theexcess ammonia by evaporation, the residue was trituratedwith ethanol (20 ml) and filtered. Recrystallization of theethanol-insoluble solid from the minimum of water gavecompound (15) (59), identical (m.p., U.V. and i.r. spectra)with that obtained by method A.We thank the Division of Cancer Treatment, NationalInstitutes of Health, US. Public Health Service, for financialsupport, Mr. S. Manning and his staff for the large-scale pre-paration of some starting materials, and Mrs. S. Mason foru.v., i.r., and n.m.r. spectra. K. H. S. was NDEA Title IVrecipient 1970-1 972, Department of Medicinal Chemistry.4/2156 Received, 18th October, 19741lB C. D. Kurd, Inorg. Synth., 1939, 1, 87
机译:1975 1253吡咯嘧啶核苷。第十一部分.氨基 atC-4 和 C-6 或 C-6 的氨基对吡咯�io[2,3=d]嘧啶核苷中 5-氰基的反应性的影响作者:Karl H. Schram 和 Leroy B. Townsend,“生物制药科学系和系描述了 6-氨基-7-(~-~-呋喃核糖基)吡咯并[2,3-d]嘧啶-5-甲腈 (7) 及其 4.6-二烷基类似物 (1, 2) 的合成。发现在酸性和碱性条件下,(7)和(1,2)的5-氰基的亲核添加比添加到丰腈碱(3)或7-(~-~-呋喃核糖基)吡咯并[2,3-~]吡咯并[2,3-~]吡咯~m~d~ne-5-甲酸酯~le(1)的腈基团更困难。肼与6-溴-7-(对D-呋喃核糖基)吡咯并[2,3-d]嘧啶-5-甲腈的反应,提供了三环核苷,我讨论了.of Chemistry, University of Utah, Salt Lake City, Utah 841 12, U.S.A.我们已经证明了l-4是4-氨基或4-氧代环,因为环在某种程度上是区隔的.6组在某些7-(p-~-呋喃核糖基)吡咯并[2,3-d]-因此, 吡咯环上的氨基是嘧啶-Ei-ca~bonitriles [例如(1)-(3)],在碱性和酸性条件下,对氰基的亲核加成具有充分活化作用。尽管嘧啶环中的氨基会影响氰基电子密度中5-氰基的敏感性,但在这种情况下,电子效应在嘧啶前面的论文中更为明显.1971,4767.in the press.end,J。奥夫格。Chem., 1970,35, 236.y-$+j H N% b,R R (3 Rpyrrole环通过增加 ( 1 ) (21 ( 3 )R = p - D - 呋喃核糖基第 x 部分, €3- c. Hinshaw, K. H. Schram, and L. €3.Townsend,显着的失活作用2 K. H. Schram 和 L. B. Townsend, Tetrahedron Letters, L. B. Townsend and G. H. Milne, Ann.New York Acad. Sci.,3 B. C. Hinshaw, J. F. Gerster, R K. Robins, and L. B. Towns- 6 A. Albert, ' Heterocyclic Chemistry, 'Oxford Universityexpected to have aPress, New York, 19681254 J.C.S. Perkin Ion the cyano-group than an amino-groups on the pyriini-dine ring.这促使我们合成了具有吡咯而不是嘧啶部分上的氨基的谷霉素类似物 (2),并研究了这种转化对 5-氰基反应性的影响。尽管有关于某些 4-取代的吡咯-嘧啶核苷 6 和丰霉素 7 (2) 的亲电反应的报道,但尚未报道吡咯 [2,3-&jpyrirnidine 核侧在 C-5 处仅具有强吸电子取代基(CN、NO 等)的亲电取代。用溴饱和的水处理化合物(1)得到6溴衍生物(4),lH n.m.r.其中只有两个峰(6、9.05和9.30)可以归纳为芳香质子1*6。i.r,在110-120“的密封容器中用液氨处理(4)12 h,使6-溴基团置换*,以74%的收率得到6-氨基化合物(7)[vm 2 200 cm-l; 6 7.9br(2H,可交换,6-NH,),8.6(H-4)和9.0(H-2)]。UV光谱中的大深色位移提供了发生亲核位移的其他证据(表)。然后研究了(7)的氰基对各种亲核试剂的反应性。6-氨基-7-(P-D-呋喃核糖-~基)吡喃0lo[2,3-d]嘧啶-5-甲酰胺(8)碱gavean异构体中过氧化氢的处理(7)[no v m ;6 6-9(6-NHJ 和 7.95 (CONH,)]。T.1.c.显示Ieast存在两种高荧光的次要产物。(8)(38%)的低收率与将丰霉素转化为桑吉霉素(65%)相比,在NH7(5)R=p-D-呋喃核糖基SCHEME Zspectrum下表明保留了氰基。(4)与肼的反应可能导致腈官能团的加成产生羧酰胺衍生物或溴基的置换形成6-肼基化合物。先前的一项研究表明,第二种途径是 6-溴糖霉素。然而,与 (4) 的氰基相比,C-4 处氨基的存在可能会使 6-溴糖霉素的腈功能失活,朝向亲核加成。因此,设想了相互竞争的反应的可能性。肼与(4)的反应实际上只得到(t-1.c.)6-肼基化合物(5)[vm 2 200 crn-l;6 8.60 (s) 和 8.57 (s) (H-2 和 H-4)、6.35 (d, H-l')、3.4-5.6 (碳水化合物质子 8) 和 5.68br (3H, 可交换, NHoNH,)]。(5)的环闭合得到3-arnino-8-(P-D-核呋喃-显示无VCN,由沸水影响。lHn.m.r.图谱(6)显示芳香族(6 9.45和9.25)和碳水化合物质子的峰,缺乏肼信号6 5.7,在6 7-8.7区域包含一个宽峰,分配给3-氨基和吡唑质子。该闭环反应证实了(4)的溴化位点。F. Gerster, B. Carpenter, R. K. Robins, and L. B. Towns-end, J. Medicin.Chem., 1967, 10, 326.R. L. Tolman, R. K. Robins, and L. B. Townsend, J .Hetero-cyclic Chem., 1971, 8, 703.s yl) p~~偶氮并[4',3' :4,5] 吡咯并[2,3-d J嘧啶 (6) 3 类似条件表明发生了侧读物。由于 aJ ( 8 ) NH (91R = p-u- 呋喃核糖基方案 2吡咯并[2,3-dJ嘧啶驻留在富电子环系统上,因此可能发生了 N-氧化8 L. B. Townsend,在“核酸化学合成程序”中,第 11 卷,编辑 W. W. Zorbach 和 R. S. Tipson,Wiley,New York,1973 年,第 267-398.9 页。 R.L.惠斯勒和ABM,J.Mediaot。Chmz.,1972.15, 168.10 R. L. Tolman, R. K. Robins, and L. B. Towmend, J .Amev.Chem. Soc., 1968, 90, 5241975由于苯胺被氧化成偶氮苯,吡啶被过氧化物氧化成吡啶N-氧化物。I302260242330277246293(;;;I304278%ax。a9.017.48.021.17.36.99-629.211.816.831.018-415.428.016.014.613-018.115.3h a x .INM2743 14240(320)248311279(252)236 (;A;)267236338270238292363P;;)6.6 31211-3 232 瓦;)'f2w;)9.010-3 30426- 1 23214.914.3 23421.421.5 33812.0 26824.6 23824.2 29016.0 36222-823517-9 293(;;;IEmax.10.18-015.017.39-310.023.017-125-120.615.446-019.913.621.216.418.2a E x 10-3.6 括号内为肩部。与(1)或(2)相比,(7)的氰基的反应性降低清楚地显示在120-130“的密封容器中硫化氢12小时。由于(5)的腈基团在碱性条件下表现出亲核攻击的倾向降低,因此在酸性条件下进行的反应将非常缓慢。通常认为,腈基在酸性条件下的初始反应是孤对电子对腈氮的质子化gr0~p.l~如果发生6-氨基的质子化,则有望延缓或阻止腈的质子化。这也许可以解释为什么在乙醇中尝试用氯化氢将(7)转化为酰亚胺(10),条件与用于将丰霉素(2)转化为酰亚胺酸酯的条件相同,即使反应时间延长,也没有成功。因此,在酸性和碱性条件下,将 4-氨基的丰叶霉素 (2) 转座到 6 位对氰基产生明确的失活作用,朝向亲核攻击。这促使我们研究两个氨基的影响,一个在C-4的嘧啶环中,另一个在C-6的吡咯环中。据认为,这将进一步降低氰基对亲核加成的反应性。在与制备(7)相似的条件下,6-溴代霉素lo(1,1)与液氨反应得到6-氨基托卡霉素(12)在74%SSCHEME 3制备硫代胺(9)中。用吡啶、三乙胺和硫化氢处理(7)的条件与报道的条件基本相同8,将(2)转化为5-硫代酰胺不会产生反应。最近的一份报告 l2 指出,在上述条件下不反应的腈可以被二甲基甲酰胺、二甲胺和硫化氢转化为硫代酰胺。以这种方式处理(7)得到硫酰胺(9),但收率非常低(300“(发现:C,41-15;H,4.5;N, 24.2.Cl,Hl,C1N,04 需要 C, 41.0;H,4.5;N, 23.95%).6-A 氨基-7-(对~-呋喃核糖基)吡咯并[2,3-d]嘧啶-5-甲腈 (7) .-方法 A .将6-溴化合物(4)(1.0 g)和甲醇氨(先前饱和为-5“)(75 ml)混合,并在密封容器中以110-1 15”加热16 h.T.1.c.显示两种主要产物RF 0.8和0-5的混合物,它们在紫外光(254 nm)下呈亮蓝色。将混合物溶解在沸腾的甲醇中,并保持在5“18 11。将棕褐色晶体过滤掉并风干,得到化合物(7)(250 mg,30y0),熔点260-261“(发现:C,49.2;H,4-55;N, 24.1.Cl,Hl,NB04 需要 C, 49-15;H,4.45;N,24.05%)。液氨(ca.3ml)加入到钢制容器中的6-溴化合物(4)(680mg)中。将容器密封,置于预热至100-llOo的油浴中,然后加热该温度12小时。在室温下用甲醇(20ml)研磨的过量氨蒸发后留下的Theresidue。滤去不溶性黄色固体,风干将[混合m.p.、i.r.和U.V.光谱数据,RF (O-S)]与方法A.6-氨基-7-(对~-呋喃核糖基)氟[2,3-dl嘧啶-5-甲酰胺(8).-化合物(7)(200mg)、浓缩氢氧化铵(10ml)和30%过氧化氢(2ml)相同[混合m.p.、i.r.和U.V.光谱数据,RF (O-S)],在室温下搅拌2手,然后在5“下保持12小时。将白色沉淀物过滤掉,并从最少的水tol6 J. M. Bobbitt和D. A. Scola, J.哎呀。Chem., 1960, 25, 561.l7 J. M. Bobbitt 和 R. E. Doolittle, J .Org. Chem., 1964, 29,H, 4.5;N,27*45y0)。方法 B.2298.A.加拉特,J .Amer. Chem.SOC., 1948, 70, 39461975give conzpound (8) (120 mg, 38y0), m.p. 257-258“ (decomp.)(发现:C,46.4;H,4-85;N,22.6。C,,H,,N,O,要求C,46.6;H,4.85;N. 22.65%).6-氨基-7-(13-D-rib0呋喃糖基)吡咯并[2,3-d]嘧啶-5-硫代甲酰胺(9).-化合物(7)(500mg)加入含有硫化氢钠(200mg)甲醇(20ml)的溶液中,该溶液已用硫化氢饱和40分钟。将混合物置于钢制容器中,将容器密封,加热110-120“12小时,然后冷却至室温。减压除去甲醇,将Theresidue溶解在最少的水中,并保持5“12h。将淡橙色沉淀物过滤并风干,得到化合物(9)(120mg,21y0),m.p.237“(发现:C,43-0;H,4.8;N,20.85。C,,H,,N,O,S,0-5H20需要C,43.1;H,4.8;N, 20-95y0).4,6-二氨基-7-(P-D-呋喃核糖基)吡咯并[2,3-d]吡喃亚胺-二-5-甲腈(6-氨基连萝卜素)(12).-6-溴连-五甲腈(1,1)(200mg)加入钢制容器中的液氨(约5ml)中。将密封容器置于预热(100-110“)油浴中,加热22小时,100-110”。容器在冰水中冷却,让茶氨蒸发。残留物在室温下用甲醇(20ml)三浸。滤去白色甲醇不溶性粉末,用最少的水进行氧化,真空干燥12小时,得到化合物(12)(120mg,72%),熔点258-260“(分解)(发现:C,44-4;H,4.95;N, 25.85.C,,H,4N,04,H20 需要 C, 44.45;H,4-95;N, 25.95%).4,6-二氨基-7-(P-o-核糖呋喃糖基)吡咯并[2,3-d]吡啶-亚胺-5-甲酰胺(6-Avninothiosangivamycin)(13) .-6-氨基连麦霉素(1 2)(300mg),硫化氢钠(100mg)和甲醇(20ml)(用硫化氢在室温下饱和45分钟)的混合物在密封容器中加热120-130°16小时,然后冷却至室温。过滤掉晶体,从最少的水中重结晶,并在减压下干燥12小时,得到com-powzd(13)(240mg,73%),熔点246-247“(发现:C,42.25;H,5.0;N,24.5。C,,H,,N,O,S 需要 C, 42.35;H,4.7;N, 24.7%).4,6-二夫尼诺-7-(~-~-呋喃核糖Z)吡咯并[2,3-d]~yrimi-dine-5-甲酰胺(6-氨基桑吉霉素)(15) .-方法A .将6-氨基茶霉素(12)(1.1g)和羟胺Is(1.1g)在乙醇(80ml)中的混合物加热回流温度16小时。滤去固体,用最少量的水重结晶,减压干燥80“5小时,得到化合物(15)(880mg,75%),熔点268-269”(发现:C,44-2;H,4.75;N,25-8。C,2H15N60 需要 C,44.45;H,4-95;N,25.9'70)。方法B.将6-溴桑吉瓦霉素(14)(1.0g)加入到液氨(约5ml)中,并将混合物在密封容器中加热110-120°16小时。蒸发除去多余的氨后,用乙醇(20ml)研磨残渣并过滤。乙醇不溶性固体的再结晶得到最少的水化合物(15)(59%),与方法A获得的相同(m.p.、U.V.和i.r.光谱)。我们感谢美国国立卫生研究院癌症治疗部。公共卫生服务部门提供财政支持,S. Manning先生及其工作人员提供一些起始材料的大规模准备工作,S. Mason 夫人提供 foru.v.、i.r. 和 n.m.r. 光谱。K. H. S. 是 NDEA Title IV获得者 1970-1 972,药物化学系。[4/2156 收稿日期:19741年10月18日lB C. D. Kurd, Inorg.合成, 1939, 1, 87

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号