首页> 外文期刊>Geophysics: Journal of the Society of Exploration Geophysicists >Joint inversion of seismic traveltimes and gravity data on unstructured grids with application to mineral exploration
【24h】

Joint inversion of seismic traveltimes and gravity data on unstructured grids with application to mineral exploration

机译:Joint inversion of seismic traveltimes and gravity data on unstructured grids with application to mineral exploration

获取原文
获取原文并翻译 | 示例
           

摘要

Seismic methods continue to receive interest for use in mineral exploration due to the much higher resolution potential of seismic data compared to the techniques traditionally used, namely, gravity, magnetics, resistivity, and electromagnetics. However, the complicated geology often encountered in hard-rock exploration can make data processing and interpretation dif-ficult. Inverting seismic data jointly with a complementary data set can help overcome these difficulties and facilitate the construction of a common earth model. We considered the joint inversion of seismic first-arrival traveltimes and gravity data to recover causative slowness and density distributions. Our joint inversion algorithm differs from previous work by (1) incorporating a large suite of measures for coupling the two physical property models, (2) slowly increasing the effect of the coupling to help avoid potential convergence issues, and (3) automatically adjusting two Tikhonov tradeoff parameters to achieve a desired fit to both data sets. The coupling measures used are both compositional and structural in nature and allow the inclusion of explicitly known or implicitly assumed empirical relationships, physical property distribution information, and cross-gradient structural coupling. For any particular exploration scenario, the combination of coupling measures used should be guided by the geologic knowledge available. We performed our inversions on unstructured grids comprised of triangular cells in 2D, or tetrahedral cells in 3D, but the joint inversion methods are equally applicable to rectilinear grids. We tested our joint inversion methodology on scenarios based on the Voisey's Bay massive sulfide deposit in Labrador, Canada. These scenarios present a challenge to the inversion of first-arrival traveltimes and we show how joint inversion with gravity data can improve recovery of the subsurface features.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号