首页> 外文期刊>Journal of environmental & engineering geophysics >Exploring the Linkages between Geotechnical Properties and Electrical Responses of Sand-Clay Mixtures under Varying Effective Stress Levels
【24h】

Exploring the Linkages between Geotechnical Properties and Electrical Responses of Sand-Clay Mixtures under Varying Effective Stress Levels

机译:Exploring the Linkages between Geotechnical Properties and Electrical Responses of Sand-Clay Mixtures under Varying Effective Stress Levels

获取原文
获取原文并翻译 | 示例
       

摘要

The strength and stability conditions of unconsolidated geo-materials, for example soils, are influenced by modifications of their micro-structure, texture, mineralogy and effective stress levels. These modifications in the internal structures of the soils often result in geohazards (e.g., landslides, liquefaction, debris flow), which often claim so many lives, destroy the environment, and cause considerable amounts of property damage. Characterization and monitoring of such geohazards demand knowledge about the geotechnical (physical and mechanical) properties of unconsolidated near-surface geo-materials of interest. The fundamental relations between geo-electrical parameters and the geotechnical properties that influence the mechanical behavior of soils are investigated by performing controlled laboratory experiments on sand-clay mixtures under stress. Spectral electrical response (SER) measurements are performed on these mixtures over a range of frequencies (0.001 Hz-1 kHz) with concurrent measurements of their geotechnical properties. Electrical parameters, such as phase, resistivity amplitude, capacitance, and loss tangent, are extracted from the SER measurements, and geotechnical properties of the mixtures, which include void ratio, dry density, and the modulus of elasticity, are obtained from laboratory measurements. Cross-plots of geotechnical properties and geo-electrical parameters indicate significant correlations. The phase and capacitance values decrease with an increase in the dry density, whilst the loss tangent and the resistivity values increase with increase in dry density. The phase and capacitance values, however, decrease with an increase in the values of the modulus of elasticity, whereas the loss tangent and the resistivity values increase with increase in elastic modulus. These relations can be useful in non-invasive prediction of the physical, mechanical, and geotechnical properties of unconsolidated geo-materials relevant in the assessment, monitoring, and mitigation of geohazards.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号