首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Unsaturated macrocyclic lactone synthesisviacatalytic ring-closing metathesis 1
【24h】

Unsaturated macrocyclic lactone synthesisviacatalytic ring-closing metathesis 1

机译:不饱和大环内酯合成催化闭环复分解1

获取原文
获取外文期刊封面目录资料

摘要

J. Chem. Soc. Perkin Trans. 1 1997 2869 Unsaturated macrocyclic lactone synthesis via catalytic ring-closing metathesis 1 Konstantinos E. Litinas * and Basil E. Salteris Laboratory of Organic Chemistry Aristotle University of Thessaloniki 54006 Thessaloniki Greece Ring-closing metathesis (RCM) of the terminal diene esters 2a,b with the Ru catalyst 1 results in the formation of the 20- 21-membered macrolactones 3a,b in high yields. RCM of the diene oleate esters 4a,b with 1 gives the 19- 20-membered macrolactones 5a,b in good yields while an analogous reaction of the diene ‚,„-unsaturated ester 6a gives the 13-membered lactone 7a in low yield. Macrocyclic lactones are important components of naturally occurring compounds,2,3 many of them insects pheromones.4 They possess a range of significant biological activity,5 (e.g.antibiotic,3e,6 antifungal,5c antitumour cytostatic,7 oestrogenic and anabolic 2a,5c) as well as being used as fragrances.8 There are several multi-step syntheses of these compounds in moderate to high yields,5 which include the following ring enlargement of smaller rings,9 lactonization of w-hydroxycarboxylic acids 10 with different reagents CC bond formation by intramolecular addition of enolate ion with Pd0 catalyst,11a intramolecular diacetylene ester coupling,11b by intramolecular Wittig 11c or Horner–Emmons11d reactions and by olefin metathesis using WCl6–Me4Sn12a or WCl6–Cp2TiMe2 12b,c or WOCl4–Cp2- TiMe2 12c as catalysts. Recent progress in the development of well-defined metathesis catalysts with a single component has extended the use of olefin metathesis 13 in polymer chemistry through ring-opening metathesis polymerization (ROMP),14 in organic synthesis 15,16 and in natural products synthesis.17 Ring-closing metathesis (RCM) of dienes,15 especially with the very efficient Ru catalyst 1,13b,18 is a general method for the construction of unsaturated carbocycles and heterocycles (Scheme 1).In continuation of our efforts 19 to synthesize 6- and 7- membered unsaturated lactones we report here our results for the preparation of 19- 20- 21- 13- and 14-membered macrolactones from RCM of acyclic diene esters with the Ru catalyst 1 (Schemes 2–4). All diene esters were prepared from commercially available materials (Scheme 5) by simple esterifi- cation. Dec-9-enyl undec-10-enoate 2a prepared in 78 yield by esterification of dec-9-enol with undec-10-enoic acid in the presence of conc.H2SO4 as catalyst in refluxing benzene for 5 h in a Dean–Stark trap was heated with a benzene solution of the catalyst 1 (1.7 mol) at 60 8C for 24 h under an argon atmosphere. Purification of the crude product by column chromatography gave the 20-membered macrolactone 3a (83) together with the first-eluted unchanged ester 2a (13). Compound 3a extracted in two fractions was a mixture of Z- and E-isomers (ratio 57 43 as indicated by GC analysis). The first fraction Z/E (80 20) by GC showed in the IR spectrum more intense absorption for cis- (720 cm21) than for trans- (965 cm21) Scheme 1 (X) (CH2)n R1 R2 (CH2)n (X) R1 P(Cy)3 Ru P(Cy)3 Ph Ph Cl Cl 1–5 mol X = O NR CH2; n = 1,2,3,4 1 isomer in comparison to the IR spectrum of the second fraction Z/E (40 60) by GC.An analogous reaction (Scheme 2) of the diene ester 2b (prepared in 94 yield by esterification for 5 h of the corresponding alcohol and acid) with a benzene solution of 1 (4 mol) gave after purification by PTLC unchanged ester 2b (8) and the 21-membered unsaturated lactone 3b (82). This lactone (eluted as two fractions) was also a mixture of Z- and E-isomers (IR absorptions 720 and 965 cm21 respectively) in a total ratio of 60 40 (by GC). In the first fraction the ratio was 73 27 (GC) and in the second 43 57. The 1H NMR spectrum of the first fraction showed signals at d 4.10 (t 2 H J 5.9 CO2CH2) and 5.31–5.36 (m 2 H CH CH) for the Z-isomer whilst the second fraction showed two triplets at 4.10 (J 5.9 CO2CH2) and 4.11 (J 5.5 CO2CH2) for the Z- and E-isomers respectively and a multiplet at 5.30–5.38 (CH CH) for both isomers.The 13C NMR spectrum of the first fraction showed signals at 173.9 ppm (COO) 130.9 and 130.6 (CH CH-) 64.0 (COOCH2-) and 34.5 ppm (CH2COO) for the Z- isomer as indicated from the more intense signals of the spectrum and that of the second spectrum showed similar signals together with others at 174.0 130.1 130.0 64.2 and 34.8 ppm for the E-isomer. The lactone 3b has previously been prepared 12c by Tsuji and Hashigushi (12 yield) by olefin metathesis of the same ester 2b with WOCl4 (20 mol)–Cp2TiMe2 (24 mol). Such macrolactonization gives from commercially available materials large-ring compounds in high yields by a simple twostep procedure. RCM of dec-9-enyl oleate 4a (prepared in 79 yield from esterification of dec-9-enol and oleic acid) with the catalyst 1 (0.8 mol) (Scheme 3) gave after column chromatography the 19-membered unsaturated lactone 5a (65).The lactone 5a was obtained as an inseparable (by GC) mixture of Z- and E-isomers (IR absorption at 720 and 965 cm21). This lactone was prepared 12c earlier (18 yield) from RCM of dec-9-enyl oleate with WCl6 (20 mol)–Cp2TiMe2 (24 mol). The ester 4b (prepared in 96 yield from undec-10-enol and oleic acid) with 1 (2 mol; Scheme 3) gave the 20-membered ring lactone 5b (63) together with unchanged starting ester Scheme 2 Reagents and conditions 1 (1.7 4 mol) C6H6 60 8C 24 h C (CH2)8 O (CH2)n O 2a,b 2,3a n = 8 (83) b n = 9 (82) O C O (CH2)8 (CH2)n 3a,b 2870 J. Chem. Soc. Perkin Trans. 1 1997 (14).This lactone eluted in two fractions as a mixture of Z- and E-isomers in a total ratio of 61 39 (by GC). In the first fraction the ratio was 71 29 (GC) while in the second it was 42 58 (GC). Thus in RCM the oleate esters give lower yields than the undec-10-enoate esters probably because of steric hindrance by the non-9-enyl moiety in the former. This behaviour is in accord with previous observations that 1 is more effective with terminal dienes.15b RCM of dec-9-enyl (E)-hex-3-enoate 6a prepared in 84 yield from esterification of dec-9-enol and (E)-hex-3-enoic acid with a benzene solution of 1 (1.5 mol) gave after column chromatography first unchanged 6a (66) followed by the known4c,f 13-membered lactone 7a (6) and then a complex mixture. The lactone 7a is an aggregation pheromone of the flat grain beetle Cryptolestes pusillus.4f Attempted preparation of the 14-membered lactone 7b from the diene ester 6b prepared in 95 yield from undec-10-enol and (E)-hex-3-enoic acid and 1 (1.5 mol) gave only a complex mixture eluted after unchanged 6b (68).The low yield in the preparation of the 13- membered lactone 7a could be attributed to the possible unproductive complexation of Ru with the b,g-double bond of the hex-3-enoate and the ester carbonyl and to steric hindrance of the propenyl ester moiety. In conclusion RCM of diene esters is an excellent method for macrolactone formation especially for terminal alkenes. The yield of this reaction is decreased with increasing steric hindrance and the possible complexation of the double bond the Ru atom and the ester carbonyl.Parallel work appeared very recently in the literature 20 in Scheme 3 Reagents and conditions 1 (0.8 2 mol) C6H6 60 8C 24 h C (CH2)7 O (CH2)n O O C O (CH2)7 (CH2)n (CH2)7CH3 4a,b 5a,b 4,5a n = 8 (65) b n = 9 (63) Scheme 4 Reagents and conditions 1 (1.5 mol) C6H6 60 8C 24 h O C O (CH2)n O (CH2)n C O 6a,b 7a,b 6,7a n = 8 (6) b n = 9 Scheme 5 Reagents and conditions i C6H6 reflux (Dean–Stark trap) Cat. conc. H2SO4 5 h Yields 78–96 (CH2)8 CO2H HO(CH2)n (CH2)8 CO2 (CH2)n + i n = 8,9 (CH2)7CO2H (CH2)7CH3 + HO(CH2)n i n = 8,9 (CH2)7CO2 (CH2)7CH3 (CH2)n 2a,b 4a,b COOH + HO(CH2)n i n = 8,9 COO (CH2)n 6a,b which the 21-membered lactone 3b was synthesized (71 yield; 82 in our preparation) by using the catalyst 1 (4 mol) and the ester 2b in dichloromethane solution.Experimental IR spectra were run as films on a Perkin–Elmer 1310 spectrophotometer. 1H NMR spectra were recorded on a Bruker 300 AM (300 MHz) spectrometer with CDCl3 as a solvent with SiMe4 as internal standard. J Values are given in Hz. 13C NMR spectra were obtained at 75.5 MHz in CDCl3 solutions with SiMe4 as internal reference. Mass spectra were determined on a VG-250 spectrometer (70 eV). GC analyses were performed with a SS column packed with 20 Carbowax 20 M (3.78 g) on Chromosorb W AW DMCS 60/80 mesh (10 ft × 1/8 in). The acids and alcohols used were commercial products of Aldrich Chem. Co. Inc. The Ru catalyst 1 was prepared according to a published procedure.18 Benzene was distilled under argon atmosphere with benzophenone ketyl and was degassed before use under anhydrous conditions.Catalyst and solvent transfers in the reaction flask were made under argon atmosphere by using a glove bag. All reactions were carried out under an argon atmosphere. General procedure for the synthesis of the diene esters 2a,b 4a,b and 6a,b The acid (0.02 mol) was added in a benzene (30 cm3) solution of the alcohol (0.03 mol) followed by 5 drops of conc. H2SO4. After the mixture had been heated under reflux in a Dean–Stark trap for 5 h most of the benzene was removed and the residue was poured onto Et2O (25 cm3) and washed with water (15 cm3). The aqueous layer was separated and extracted with Et2O (15 cm3) and the combined organic layer and extracts were washed with 5 aqueous NaHCO3 (20 cm3) and with water (cm3) dried (Na2SO4) and concentrated under reduced pressure.Column chromatography silica gel No 60 Merck hexane–dichloromethane (4 1) of the residue gave at first the corresponding diene ester followed by a small amount of unchanged alcohol. Dec-9-enyl undec-10-enoate 2a. This ester (78) was a colourless oil; nmax/cm21 3070 2920 2840 1730 1632 1460 1170 990 910 740 and 720; dH 1.21–1.43 (m 20H) 1.55–1.7 (m 4H) 1.98–2.1 (m 4H) 2.29 (t J 7.5 2H) 4.05 (t J 6.7 2H) 4.9–5.03 (m 4H) and 5.76–5.88 (m 2H); dC 25.0 25.9 28.6 28.8 28.9 29.0 29.05 29.1 29.15 29.2 29.25 29.3 29.4 33.75 34.4 64.3 114.1 139.1 and 173.9; m/z () 322 (57) 304 (9) 184 (54) 166 (62) 138 (77) 110 (74) 96 (88) 83 (94) and 55 (100) (Found C 78.4; H 11.8. C21H38O2 requires C 78.2; H 11.9). Undec-10-enyl undec-10-enoate 2b. The title ester (94) as a colourless oil;12c nmax/cm21 3060 2920 2840 1730 1630 1460 1170 990 900 and 725; dH 1.22–1.45 (m 22H) 1.56–1.69 (m 4H) 1.98–2.08 (m 4H) 2.29 (t J 7.5 2H) 4.05 (t J 6.7 2H) 4.88–5.05 (m 4H) and 5.72–5.88 (m 2H); dC 24.9 25.8 28.6 28.65 28.7 28.8 28.9 28.95 29.0 29.1 29.2 29.25 29.3 29.5 33.6 34.2 64.1 114.0 138.8 and 173.4; m/z () 336 (50) 318 (7) 184 (55) 166 (62) 152 (69) 124 (71) 110 (75) 96 (90) 82 (95) and 55 (100).Dec-9-enyl oleate 4a. This ester (79) was a colourless oil; nmax/cm21 3060 2980 2920 2840 1730 1635 1460 1170 990 910 and 725; dH 0.88 (t J 6.6 3H) 1.18–1.42 (m 30H) 1.54– 1.68 (m 4H) 1.94–2.01 (m 6H) 2.29 (t J 7.5 2H) 4.05 (t J 6.7 2H) 4.90–5.05 (m 2H) 5.27–5.43 (m 2H) and 5.73–5.87 (m 1H); dC 14.0 22.6 25.0 25.9 27.1 27.2 28.6 28.9 28.95 29.0 29.1 29.15 29.2 29.3 29.4 29.5 29.55 29.65 29.7 31.9 33.7 34.3 64.3 114.1 129.7 129.9 139.0 and 173.8; m/z () 420 (53) 392 (12) 283 (33) 264 (67) 222 (35) 138 (84) 97 (86) 83 (93) and 55 (100) (Found C 79.8; H 12.6.C28H52O2 requires C 79.9; H 12.45). Undec-10-enyl oleate 4b. The title ester (96) was a colourless oil; nmax/cm21 3060 2985 2910 2840 1730 1635 1460 1170 990 910 and 725; dH 0.88 (t J 6.6 3H) 1.20–1.40 (m, J. Chem. Soc. Perkin Trans. 1 1997 2871 32H) 1.55–1.68 (m 4H) 1.95–2.09 (m 6H) 2.29 (t J 7.5 2H) 4.05 (t J 6.7 2H) 4.90–5.05 (m 2H) 5.30–5.42 (m 2H) and 5.75–5.88 (m 1H); dC 14.0 22.6 25.0 25.9 27.1 27.2 28.6 28.9 28.95 29.0 29.1 29.2 29.25 29.3 29.35 29.4 29.5 29.6 29.65 29.7 31.9 33.75 34.3 64.3 114.1 129.7 129.9 139.05 and 173.8; m/z () 434 (46) 406 (10) 283 (28) 264 (66) 222 (37) 152 (77) 97 (88) 83 (91) and 55 (100) (Found C 79.9; H 12.2.C29H54O2 requires C 80.1; H 12.5). Dec-9-enyl (E)-hex-3-enoate 6a. This ester (84) was a colourless oil; nmax/cm21 3060 3020 2920 2840 1730 1630 1460 1160 990 965 and 910; dH 0.96 (t J 7.5 3H) 1.22–1.42 (m 10H) 1.55–1.67 (m 2H) 1.98–2.10 (m 4H) 2.99 (d J 6.2 2H) 4.04 (t J 6.7 2H) 4.87–5.03 (m 2H) 5.43–5.63 (m 2H) and 5.72–5.86 (m 1H); dC 13.5 25.5 26.0 28.7 29.0 29.1 29.3 29.4 33.9 38.2 64.7 114.2 120.9 136.2 139.1 and 172.5; m/z () 252 (46) 251 (32) 224 (6) 138 (70) 114 (79) 97 (83) 83 (85) and 55 (100) (Found C 76.4; H 11.0. C16H28O2 requires C 76.1; H 11.2). Undec-10-enyl (E)-hex-3-enoate 6b. The title ester (95) was a colourless oil; nmax/cm21 3060 3020 2915 2840 1730 1630 1460 1160 990 965 and 910; dH 0.98 (t J 7.5 3H) 1.20–1.44 (m 12H) 1.55–1.68 (m 2H) 1.98–2.11 (m 4H) 3.02 (d J 6.0 2H) 4.07 (t J 6.7 2H) 4.90–5.03 (m 2H) 5.45–5.66 (m 2H) and 5.74–5.88 (m 1H); dC 13.4 25.5 25.8 28.5 28.9 29.0 29.2 29.3 29.4 33.7 38.1 64.5 114.1 120.7 136.2 139.2 and 172.3; m/z () 266 (60) 265 (48) 238 (11) 152 (76) 124 (61) 114 (94) 97 (94) 83 (100) and 55 (96) (Found C 76.7; H 11.4.C17H30O2 requires C 76.6; H 11.35). Representative procedure for the synthesis of macrolactones Nonadec-10-en-19-olide 3a. Ruthenium catalyst 1 (9.3 mg 0.01 mmol) was dissolved in a three-necked flask in benzene (80 cm3) in a glove bag at room temperature. The diene ester 2a (191 mg 0.593 mmol) was added to the resulting light orange–brown solution via a syringe under argon atmosphere and the mixture was then heated at 60 8C for 24 h.After cooling the mixture was quenched by exposure to air and concentrated under reduced pressure. The residue was separated by column chromatography silica gel No 60 Merck hexane– dichloromethane (2 1 to 1 2) to give after elution of unchanged 2a (25 mg 13) the olide 3a as a colourless oil in two fractions first fraction 60 mg Z/E (80 20 by GC); second fraction 85 mg Z/E (40 60 by GC); total 145 mg 83 yield Z/E (57 43); nmax/cm21 3050 2920 2840 1730 1460 1165 965 w (weak) for first and m (medium) for second fraction 735 and 720 (m for both fractions); dH 1.20–1.42 (m 20H) 1.55– 1.70 (m 4H) 1.96–2.08 (m 4H) 2.315 (t J 6.9 CH2CO2) and 2.33 (t J 6.6 CH2CO2) 4.10 (t J 6.2 CO2CH2) and 4.12 (t J 5.9 CO2CH2) and 5.26–5.41 (m 2H); dC 24.9 25.1 26.0 26.2 26.4 26.5 27.3 27.35 27.5 27.55 28.1 28.15 28.4 28.45 28.5 28.6 28.65 28.75 28.8 28.9 29.0 29.1 29.2 29.3 29.4 29.45 31.7 31.8 34.1 34.75 64.2 64.25 130.0 130.05 130.6 130.7 174.0 and 174.05; m/z () 294 (20) 276 (10) 149 (46) 137 (47) 123 (84) 109 (95) 95 (99) 81 (99) and 55 (100) (Found C 77.4; H 11.5.C19H34O2 requires C 77.5; H 11.65). Eicos-10-en-20-olide 3b. Addition of the diene 2b (130 mg 0.387 mmol) to a benzene solution of the Ru catalyst 1 (15 mg 0.016 mmol) according to the above described procedure gave after separation of the resulting mixture by PTLC silica gel hexane–CH2Cl2 (1:2) unchanged 2b (10 mg 8) and the olide 3b as a colourless oil 12c in two fractions first fraction 55 mg Z/E (73 27 by GC); second fraction 42 mg Z/E (43 57 by GC); total 97 mg 82 yield Z/E (60 40); nmax/cm21 3070 2920 2840 1730 1460 1170 965 (m for both fractions) 735sh and 720 (m for first and w for second fraction); dH(first fraction) 1.22–1.41 (m 22H) 1.55–1.70 (m 4H) 1.93–2.06 (m 4H) 2.31 (t J 6.7 2H) 4.10 (t J 5.9 2H) and 5.31–5.36 (m 2H); dH- (second fraction) 1.22–1.41 (m 22H) 1.55–1.70 (m 4H) 1.93– 2.06 (m 4H) 2.31 (t J 6.7 2H) 4.10 (t J 5.9 CO2CH2) and 4.12 (t J 5.5 CO2CH2) and 5.30–5.38 (m 2H); dC 25.2 25.75 25.8 26.0 26.15 26.5 26.6 27.7 27.9 27.95 28.3 28.4 28.45 28.5 28.55 28.65 28.7 28.8 28.9 29.0 29.1 29.15 29.2 29.35 29.4 29.45 29.5 29.55 31.7 31.95 34.5 34.8 64.0 64.2 130.0 130.1 130.6 130.9 173.9 and 174.0; m/z () 308 (22) 290 (8) 110 (86) 96 (84) 82 (100) 55 (79) and 54 (85).Octadec-9-en-18-olide 5a. Reaction of the diene 4a (244 mg 0.581 mmol) with the catalyst 1 (4.25 mg 0.0046 mmol) gave after purification by column chromatography and after the elution of the unchanged ester 4a (64 mg 26) the olide 5a as a colourless oil 12c (106 mg 65) not separated by GC; nmax/cm21 3060 2920 2850 1730 1460 1170 965 730sh and 720; dH 1.18–1.45 (m 18H) 1.56–1.70 (m 4H) 1.96–2.09 (m 4H) 2.31 (t J 6.8 2H) 4.11 (t J 5.4 2H) and 5.25–5.40 (m 2H); dC 25.3 25.9 26.1 26.3 26.35 27.1 27.2 27.8 27.9 28.1 28.6 28.8 28.85 28.9 28.95 29.05 29.1 29.15 29.2 29.3 29.4 29.5 29.6 29.65 32.0 32.1 34.9 35.0 64.2 64.6 130.1 130.3 130.6 130.8 174.0 and 174.1; m/z () 280 (62) 262 (28) 252 (12) 149 (30) 137 (48) 123 (6) 109 (68) 95 (78) 82 (88) and 55 (100).Nonadec-9-en-19-olide 5b. Reaction of the diene 4b (174 mg 0.4 mmol) with the catalyst 1 (7.3 mg 0.079 mmol) gave after elution of the unchanged 4b (25 mg 14) the olide 5b as a colourless oil in two fractions first fraction 48 mg Z/E (71:29 by GC); second fraction 26 mg Z/E (42 58 by GC); total 74 mg 63 yield Z/E (61 39); nmax/cm21 3060 2910 2840 1730 1460 1170 965 735sh and 720; dH 1.55–1.45 (m 20H) 1.55– 1.70 (m 4H) 1.92–2.10 (m 4H) 2.32 (t J 6.7 2H) 4.12 (t J 6.1 2H) and 5.25–5.40 (m 2H); dC 24.9 25.3 25.4 25.5 25.9 26.5 27.0 27.4 27.9 28.0 28.05 28.1 28.2 28.4 28.5 28.6 28.7 28.8 28.9 29.05 29.1 29.3 29.4 29.5 29.55 29.7 31.6 32.3 34.6 34.8 63.8 64.1 129.9 130.0 130.6 130.9 173.85 and 173.9; m/z () 294 (13) 276 (6) 149 (62) 123 (60) 109 (91) 95 (98) 81 (100) 55 (99) (Found C 77.3; H 11.6.C19H34O2 requires C 77.5; H 11.65). Dodec-3-en-12-olide 7a. Reaction of the diene 6a (167 mg 0.663 mmol) with 1 (9 mg 0.0097 mmol) gave after separation by column chromatography the unchanged ester 6a (110 mg 66) followed by the olide 7a as colourless oil 4c,f (8 mg 6) dH 1.22–1.46 (m 10H) 1.55–1.66 (m 2H) 1.98–2.11 (m 2H) 3.01 (d J 6.1) 4.08 (t J 5.0) and 5.52–5.95 (m 2H); m/z () 196 (8) 149 (34) 137 (52) 123 (67) 110 (79) 96 (94) 82 (96) and 55 (100).Finally a complex mixture (27 mg) was eluted. Attempted preparation of tridec-3-en-13-olide 7b. Reaction of the diene 6b (151 mg 0.568 mmol) with 1 (8 mg 0.0086 mmol) gave after separation by column chromatography unchanged 6b (103 mg 68) followed by a complex mixture (25 mg). Acknowledgements We gratefully acknowledge the generous gift of the Ru catalyst 1 by Prof. R. H. Grubbs (California Institute of Technology). References 1 Preliminary communication K.E. Litinas and B. E. Salteris presented at the 17th Hellenic Chemical Congress Patra 1996 Abstrs. p. 144. 2 (a) R. H. Thomson The Chemistry of Natural Products Blackie Glasgow 1986 p. 119; (b) W. B. Turner and D. C. Aldridge Fungal Metabolites II Academic Press London 1983 p. 176; (c) K. Nakanishi T. Goto S. Ito S. Natori and S. Nozoe Natural Products Chemistry Academic Press New York 1974 vol. 2 p. 299. 3 (a) M. Kerschbaum Ber. Deutsch. Chem. Ges. 1927 60B 902; (b) H. Brockmann and W. Henkel Naturwissenschaften 1950 37 138; (c) J. Taskinen and L. Nykanen Acta Chem. Scand. Ser. B 1975 29 757; (d) K. Hanson J. A. O’Neill T. J. Simpson and C. L. Willis J. Chem. Soc. Perkin Trans. 1 1994 2493; (e) A. J. Carnell G. Casy G. Gorins A. Kompany-Saeid R. McCague H.F. Olivo S. M. Roberts and A. J. Willets J. Chem. Soc. Perkin Trans. 1 1994 3431; ( f ) S. D. Rychnovsky and K. Hwang J. Org. Chem. 1994 59 5414. 4 (a) T. Hamada K. Daikai R. Irie and T. Katsuki Tetrahedron Asymmetry 1995 6 2441; (b) G. H. Vecchio and A. C. 2872 J. Chem. Soc. Perkin Trans. 1 1997 Oehlschlager J. Org. Chem. 1994 59 4853; (c) C. D. J. Boden J. Chambers and I. D. R. Stevens Synthesis 1993 411; (d) E. Keinan S. K. Sinka and S. P. Singh Tetrahedron 1991 47 4631; (e) Y. Naoshima A. Nakamura Y. Munakata M. Kamezawa and H. Tachibana Bull. Chem. Soc. Jpn. 1990 63 1263; ( f ) K. J. G. Millar A. C. Oeschlager and J. W. Wong J. Org. Chem. 1983 48 4404. 5 (a) W. Keller-Schierlein Fortschr. Chem. Org. Naturst. 1973 30 313; (b) S. Masamune G. S. Bates and J. W. Corcoran Angew.Chem. Int. Ed. Engl. 1977 16 585; (c) K. C. Nicolaou Tetrahedron 1977 33 683; (d) T. G. Back Tetrahedron 1977 33 3041; (e) S. Masamune and P. A. McCarthy in Macrolides ed. S. Omura Academic Press New York 1984 ch. 4; ( f) M. M. Mansuri and I. Paterson Tetrahedron 1985 41 3569; (g) C. J. Roxburgh Tetrahedron 1995 51 9567. 6 S. Omura Macrolide Antibiotics Academic Press Orlando 1984 p. 3. 7 D. Vazquez in Antibiotics III. Mechanism of Action of Antimicrobial and Antitumor Agents ed. J. W. Corcoran and F. E. Hahn Springer New York 1975 p. 459; M. Binder and C. Tamm Angew. Chem. Int. Ed. Engl. 1973 12 370; S. B. Carter Endeavour 1972 31 77. 8 S. Abe T. Eto and Y. Tsujito Cosmet. Perfum. 1973 88 67; B. D. Mookherjee and R. A. Wilson in Fragrance Chemistry ed. E. T. Theimer Academic Press Orlando 1982 p.443; P. Kraft and W. Tochtermann Liebigs Ann. Chem. 1994 1161. 9 E. J. Corey D. J. Brunelle and K. C. Nicolaou J. Am. Chem. Soc. 1977 99 7359; L. Ruzicka and M. Stoll Helv. Chim. Acta 1928 11 1159. 10 M. Stoll and A. Rouve Helv. Chim. Acta 1934 17 1283; K. Steliou and M.-A. Poupart J. Am. Chem. Soc. 1983 105 7130; E. J. Corey and K. C. Nicolaou J. Am. Chem. Soc. 1974 96 5614; T. Kurihara Y. Nakajima and O. Mitsunobu Tetrahedron Lett. 1976 2455; G. Voss and H. Gerlach Helv. Chim. Acta 1983 66 2994; J. Inanaga K. Hirata H. Saeki T. Katsuki and M. Yamaguchi Bull. Chem. Soc. Jpn. 1979 52 1989. 11 (a) B. M. Trost and T. R. Verhoeven J. Am. Chem. Soc. 1977 99 3867; (b) B. M. Trost S. Matsubara and J. J. Caringi J. Am. Chem. Soc. 1989 111 8745; (c) H. J. Bestmann and R.Schobert Angew. Chem. Int. Ed. Engl. 1983 22 780; (d) G. E. Keck A. Paslani and S. F. McHardy J. Org. Chem. 1994 59 3113. 12 (a) D. Villemin Tetrahedron Lett. 1980 21 1715; (b) J. Tsuji and S. Hashiguchi Tetrahedron Lett. 1980 21 2955; (c) J. Tsuji and S. Hashiguchi J. Organometal. Chem. 1981 218 69. 13 (a) K. J. Ivin Olefin Metathesis Academic Press New York 1983; (b) R. H. Grubbs and S. H. Pine in Comprehensive Organic Synthesis ed. B. M. Trost Pergamon New York 1991 vol. 5 ch. 9.3; (c) R. H. Grubbs S. J. Miller and G. C. Fu Acc. Chem. Res. 1995 28 446; (d) H. G. Schmalz Angew. Chem. 1995 107 1981. 14 B. M. Novak and R. H. Grubbs J. Am. Chem. Soc. 1988 110 960; B. M. Novak and R. H. Grubbs J. Am. Chem. Soc. 1988 110 7542; R. H. Grubbs and W. Tumas Science 1989 243 907; G.C. Bazan E. Khosravi R. R. Schrock W. J. Feast V. C. Gibson M. B. O’Regan J. K. Thomas and W. M. Davis J. Am. Chem. Soc. 1990 112 8378; G. C. Bazan J. K. Oskam H. C. Cho L. Y. Park and R. R. Schrock J. Am. Chem. Soc. 1991 113 6899; B. M. Novak W. Risse and R. H. Grubbs Adv. Polym. Sci. 1992 102 47; M. A. Hillmyer C. Lepetit D. V. McGrath B. M. Novak and R. H. Grubbs Macromolecules 1992 25 3345; S. T. Nguyen L. K. Johnson and R. H. Grubbs J. Am. Chem. Soc. 1992 114 3974; R. R. Schrock in Ring Opening Polymerization ed. D. J. Brunnel Hawer Munich 1993 p. 129; S. T. Nguyen and R. H. Grubbs J. Am. Chem. Soc. 1993 115 9858; P. E. Schwab M. B. France R. H. Grubbs and J. W. Ziller Angew. Chem. Int. Ed. Engl. 1995 34 2039; C. Fraser and R. H. Grubbs Macromolecules 1995 28 7248; A. W. Stumpf E.Saive A. Demonceau and A. F. Noels J. Chem. Soc. Chem. Commun. 1995 1127; M. D. Lynn S. Kanaoka and R. H. Grubbs J. Am. Chem. Soc. 1996 118 784. 15 (a) G. C. Fu and R. H. Grubbs J. Am. Chem. Soc. 1992 114 5426; (b) G. C. Fu and R. H. Grubbs J. Am. Chem. Soc. 1992 114 7324; (c) G. C. Fu and R. H. Grubbs J. Am. Chem. Soc. 1993 115 3800; (d) G. C. Fu S. T. Nguyen and R. H. Grubbs J. Am. Chem. Soc. 1993 115 9856; (e) O. Fujimura G. C. Fu and R. H. Grubbs J. Org. Chem. 1994 59 4029; ( f) S. Kim N. Bowden and R. H. Grubbs J. Am. Chem. Soc. 1994 116 1081; (g) S. J. Miller S. Kim Z. Chen and R. H. Grubbs J. Am. Chem. Soc. 1995 117 2108; (h) S. J. Miller and R. H. Grubbs J. Am. Chem. Soc. 1995 117 5855; (i) C. M. Huwe O. C. Kiehl and S. Blechert Synlett 1996 65; ( j) O. Fujimura and R. H.Grubbs J. Am. Chem. Soc. 1996 118 2499; (k) S. Kim W. J. Zuercher N. B. Bowden and R. H. Grubbs J. Org. Chem. 1996 61 1073. 16 O. Fujimura G. C. Fu P. W. K. Rothemund and R. H. Grubbs J. Am. Chem. Soc. 1995 117 2355; R. R. Schrock J. S. Murdzek G. C. Bazan J. Robbins M. DiMare and M. O’Regan J. Am. Chem. Soc. 1990 112 3875; R. R. Schrock R. T. DePue J. Feldman C. J. Schowerien J. C. Dewan and A. H. Liu J. Am. Chem. Soc. 1988 110 1423; A. Aguero J. Kress and J. A. Osborn J. Chem. Soc. Chem. Commun. 1985 793; J. Couturier C. Paillet M. Leconte J. M. Basset and K. Weiss Angew. Chem. Int. Ed. Engl. 1992 31 628. 17 B. C. Borer S. Deerenberg H. Bierangel and U. K. Pandit Tetrahedron Lett. 1994 35 3191; S. F. Martin Y. Liao H.-J. Chen M. Patzel and M. N. Ramser Tetrahedron Lett. 1994 35 6005; S.A. Wagman and S. F. Martin Tetrahedron Lett. 1995 36 1169; A. F. Houri Z. Xu D. A. Cogan and A. H. Hoveyda J. Am. Chem. Soc. 1995 117 2943; P. Bertinato E. J. Sorensen D. Meng and S. J. Danishefsky J. Org. Chem. 1996 61 8000; K. C. Nicolaou Yen He D. Vourloumis H. Vallberg and Z. Yang Angew. Chem. Int. Ed. Engl. 1996 35 2399. 18 Preparation and characterization of catalyst 1 S. T. Nguyen L. K. Johnson R. H. Grubbs and J. W. Ziller J. Am. Chem. Soc. 1992 114 3974; S. T. Nguyen R. H. Grubbs and J. W. Ziller J. Am. Chem. Soc. 1993 115 9858. 19 G. C. Fu R. H. Grubbs K. E. Litinas and S. T. Nguyen unpublished results. 20 A. Furstner and K. Langemann J. Org. Chem. 1996 61 3942. Paper 7/02353G Received 7th April 1997 Accepted 29th May 1997 J. Chem. Soc. Perkin Trans. 1 1997 2869 Unsaturated macrocyclic lactone synthesis via catalytic ring-closing metathesis 1 Konstantinos E.Litinas * and Basil E. Salteris Laboratory of Organic Chemistry Aristotle University of Thessaloniki 54006 Thessaloniki Greece Ring-closing metathesis (RCM) of the terminal diene esters 2a,b with the Ru catalyst 1 results in the formation of the 20- 21-membered macrolactones 3a,b in high yields. RCM of the diene oleate esters 4a,b with 1 gives the 19- 20-membered macrolactones 5a,b in good yields while an analogous reaction of the diene ‚,„-unsaturated ester 6a gives the 13-membered lactone 7a in low yield. Macrocyclic lactones are important components of naturally occurring compounds,2,3 many of them insects pheromones.4 They possess a range of significant biological activity,5 (e.g.antibiotic,3e,6 antifungal,5c antitumour cytostatic,7 oestrogenic and anabolic 2a,5c) as well as being used as fragrances.8 There are several multi-step syntheses of these compounds in moderate to high yields,5 which include the following ring enlargement of smaller rings,9 lactonization of w-hydroxycarboxylic acids 10 with different reagents CC bond formation by intramolecular addition of enolate ion with Pd0 catalyst,11a intramolecular diacetylene ester coupling,11b by intramolecular Wittig 11c or Horner–Emmons11d reactions and by olefin metathesis using WCl6–Me4Sn12a or WCl6–Cp2TiMe2 12b,c or WOCl4–Cp2- TiMe2 12c as catalysts. Recent progress in the development of well-defined metathesis catalysts with a single component has extended the use of olefin metathesis 13 in polymer chemistry through ring-opening metathesis polymerization (ROMP),14 in organic synthesis 15,16 and in natural products synthesis.17 Ring-closing metathesis (RCM) of dienes,15 especially with the very efficient Ru catalyst 1,13b,18 is a general method for the construction of unsaturated carbocycles and heterocycles (Scheme 1).In continuation of our efforts 19 to synthesize 6- and 7- membered unsaturated lactones we report here our results for the preparation of 19- 20- 21- 13- and 14-membered macrolactones from RCM of acyclic diene esters with the Ru catalyst 1 (Schemes 2–4). All diene esters were prepared from commercially available materials (Scheme 5) by simple esterifi- cation. Dec-9-enyl undec-10-enoate 2a prepared in 78 yield by esterification of dec-9-enol with undec-10-enoic acid in the presence of conc.H2SO4 as catalyst in refluxing benzene for 5 h in a Dean–Stark trap was heated with a benzene solution of the catalyst 1 (1.7 mol) at 60 8C for 24 h under an argon atmosphere. Purification of the crude product by column chromatography gave the 20-membered macrolactone 3a (83) together with the first-eluted unchanged ester 2a (13). Compound 3a extracted in two fractions was a mixture of Z- and E-isomers (ratio 57 43 as indicated by GC analysis). The first fraction Z/E (80 20) by GC showed in the IR spectrum more intense absorption for cis- (720 cm21) than for trans- (965 cm21) Scheme 1 (X) (CH2)n R1 R2 (CH2)n (X) R1 P(Cy)3 Ru P(Cy)3 Ph Ph Cl Cl 1–5 mol X = O NR CH2; n = 1,2,3,4 1 isomer in comparison to the IR spectrum of the second fraction Z/E (40 60) by GC.An analogous reaction (Scheme 2) of the diene ester 2b (prepared in 94 yield by esterification for 5 h of the corresponding alcohol and acid) with a benzene solution of 1 (4 mol) gave after purification by PTLC unchanged ester 2b (8) and the 21-membered unsaturated lactone 3b (82). This lactone (eluted as two fractions) was also a mixture of Z- and E-isomers (IR absorptions 720 and 965 cm21 respectively) in a total ratio of 60 40 (by GC). In the first fraction the ratio was 73 27 (GC) and in the second 43 57. The 1H NMR spectrum of the first fraction showed signals at d 4.10 (t 2 H J 5.9 CO2CH2) and 5.31–5.36 (m 2 H CH CH) for the Z-isomer whilst the second fraction showed two triplets at 4.10 (J 5.9 CO2CH2) and 4.11 (J 5.5 CO2CH2) for the Z- and E-isomers respectively and a multiplet at 5.30–5.38 (CH CH) for both isomers.The 13C NMR spectrum of the first fraction showed signals at 173.9 ppm (COO) 130.9 and 130.6 (CH CH-) 64.0 (COOCH2-) and 34.5 ppm (CH2COO) for the Z- isomer as indicated from the more intense signals of the spectrum and that of the second spectrum showed similar signals together with others at 174.0 130.1 130.0 64.2 and 34.8 ppm for the E-isomer. The lactone 3b has previously been prepared 12c by Tsuji and Hashigushi (12 yield) by olefin metathesis of the same ester 2b with WOCl4 (20 mol)–Cp2TiMe2 (24 mol). Such macrolactonization gives from commercially available materials large-ring compounds in high yields by a simple twostep procedure. RCM of dec-9-enyl oleate 4a (prepared in 79 yield from esterification of dec-9-enol and oleic acid) with the catalyst 1 (0.8 mol) (Scheme 3) gave after column chromatography the 19-membered unsaturated lactone 5a (65).The lactone 5a was obtained as an inseparable (by GC) mixture of Z- and E-isomers (IR absorption at 720 and 965 cm21). This lactone was prepared 12c earlier (18 yield) from RCM of dec-9-enyl oleate with WCl6 (20 mol)–Cp2TiMe2 (24 mol). The ester 4b (prepared in 96 yield from undec-10-enol and oleic acid) with 1 (2 mol; Scheme 3) gave the 20-membered ring lactone 5b (63) together with unchanged starting ester Scheme 2 Reagents and conditions 1 (1.7 4 mol) C6H6 60 8C 24 h C (CH2)8 O (CH2)n O 2a,b 2,3a n = 8 (83) b n = 9 (82) O C O (CH2)8 (CH2)n 3a,b 2870 J. Chem. Soc. Perkin Trans. 1 1997 (14). This lactone eluted in two fractions as a mixture of Z- and E-isomers in a total ratio of 61 39 (by GC).In the first fraction the ratio was 71 29 (GC) while in the second it was 42 58 (GC). Thus in RCM the oleate esters give lower yields than the undec-10-enoate esters probably because of steric hindrance by the non-9-enyl moiety in the former. This behaviour is in accord with previous observations that 1 is more effective with terminal dienes.15b RCM of dec-9-enyl (E)-hex-3-enoate 6a prepared in 84 yield from esterification of dec-9-enol and (E)-hex-3-enoic acid with a benzene solution of 1 (1.5 mol) gave after column chromatography first unchanged 6a (66) followed by the known4c,f 13-membered lactone 7a (6) and then a complex mixture. The lactone 7a is an aggregation pheromone of the flat grain beetle Cryptolestes pusillus.4f Attempted preparation of the 14-membered lactone 7b from the diene ester 6b prepared in 95 yield from undec-10-enol and (E)-hex-3-enoic acid and 1 (1.5 mol) gave only a complex mixture eluted after unchanged 6b (68).The low yield in the preparation of the 13- membered lactone 7a could be attributed to the possible unproductive complexation of Ru with the b,g-double bond of the hex-3-enoate and the ester carbonyl and to steric hindrance of the propenyl ester moiety. In conclusion RCM of diene esters is an excellent method for macrolactone formation especially for terminal alkenes. The yield of this reaction is decreased with increasing steric hindrance and the possible complexation of the double bond the Ru atom and the ester carbonyl.Parallel work appeared very recently in the literature 20 in Scheme 3 Reagents and conditions 1 (0.8 2 mol) C6H6 60 8C 24 h C (CH2)7 O (CH2)n O O C O (CH2)7 (CH2)n (CH2)7CH3 4a,b 5a,b 4,5a n = 8 (65) b n = 9 (63) Scheme 4 Reagents and conditions 1 (1.5 mol) C6H6 60 8C 24 h O C O (CH2)n O (CH2)n C O 6a,b 7a,b 6,7a n = 8 (6) b n = 9 Scheme 5 Reagents and conditions i C6H6 reflux (Dean–Stark trap) Cat. conc. H2SO4 5 h Yields 78–96 (CH2)8 CO2H HO(CH2)n (CH2)8 CO2 (CH2)n + i n = 8,9 (CH2)7CO2H (CH2)7CH3 + HO(CH2)n i n = 8,9 (CH2)7CO2 (CH2)7CH3 (CH2)n 2a,b 4a,b COOH + HO(CH2)n i n = 8,9 COO (CH2)n 6a,b which the 21-membered lactone 3b was synthesized (71 yield; 82 in our preparation) by using the catalyst 1 (4 mol) and the ester 2b in dichloromethane solution. Experimental IR spectra were run as films on a Perkin–Elmer 1310 spectrophotometer.1H NMR spectra were recorded on a Bruker 300 AM (300 MHz) spectrometer with CDCl3 as a solvent with SiMe4 as internal standard. J Values are given in Hz. 13C NMR spectra were obtained at 75.5 MHz in CDCl3 solutions with SiMe4 as internal reference. Mass spectra were determined on a VG-250 spectrometer (70 eV). GC analyses were performed with a SS column packed with 20 Carbowax 20 M (3.78 g) on Chromosorb W AW DMCS 60/80 mesh (10 ft × 1/8 in). The acids and alcohols used were commercial products of Aldrich Chem. Co. Inc. The Ru catalyst 1 was prepared according to a published procedure.18 Benzene was distilled under argon atmosphere with benzophenone ketyl and was degassed before use under anhydrous conditions. Catalyst and solvent transfers in the reaction flask were made under argon atmosphere by using a glove bag.All reactions were carried out under an argon atmosphere. General procedure for the synthesis of the diene esters 2a,b 4a,b and 6a,b The acid (0.02 mol) was added in a benzene (30 cm3) solution of the alcohol (0.03 mol) followed by 5 drops of conc. H2SO4. After the mixture had been heated under reflux in a Dean–Stark trap for 5 h most of the benzene was removed and the residue was poured onto Et2O (25 cm3) and washed with water (15 cm3). The aqueous layer was separated and extracted with Et2O (15 cm3) and the combined organic layer and extracts were washed with 5 aqueous NaHCO3 (20 cm3) and with water (cm3) dried (Na2SO4) and concentrated under reduced pressure. Column chromatography silica gel No 60 Merck hexane–dichloromethane (4 1) of the residue gave at first the corresponding diene ester followed by a small amount of unchanged alcohol.Dec-9-enyl undec-10-enoate 2a. This ester (78) was a colourless oil; nmax/cm21 3070 2920 2840 1730 1632 1460 1170 990 910 740 and 720; dH 1.21–1.43 (m 20H) 1.55–1.7 (m 4H) 1.98–2.1 (m 4H) 2.29 (t J 7.5 2H) 4.05 (t J 6.7 2H) 4.9–5.03 (m 4H) and 5.76–5.88 (m 2H); dC 25.0 25.9 28.6 28.8 28.9 29.0 29.05 29.1 29.15 29.2 29.25 29.3 29.4 33.75 34.4 64.3 114.1 139.1 and 173.9; m/z () 322 (57) 304 (9) 184 (54) 166 (62) 138 (77) 110 (74) 96 (88) 83 (94) and 55 (100) (Found C 78.4; H 11.8. C21H38O2 requires C 78.2; H 11.9). Undec-10-enyl undec-10-enoate 2b. The title ester (94) as a colourless oil;12c nmax/cm21 3060 2920 2840 1730 1630 1460 1170 990 900 and 725; dH 1.22–1.45 (m 22H) 1.56–1.69 (m 4H) 1.98–2.08 (m 4H) 2.29 (t J 7.5 2H) 4.05 (t J 6.7 2H) 4.88–5.05 (m 4H) and 5.72–5.88 (m 2H); dC 24.9 25.8 28.6 28.65 28.7 28.8 28.9 28.95 29.0 29.1 29.2 29.25 29.3 29.5 33.6 34.2 64.1 114.0 138.8 and 173.4; m/z () 336 (50) 318 (7) 184 (55) 166 (62) 152 (69) 124 (71) 110 (75) 96 (90) 82 (95) and 55 (100).Dec-9-enyl oleate 4a. This ester (79) was a colourless oil; nmax/cm21 3060 2980 2920 2840 1730 1635 1460 1170 990 910 and 725; dH 0.88 (t J 6.6 3H) 1.18–1.42 (m 30H) 1.54– 1.68 (m 4H) 1.94–2.01 (m 6H) 2.29 (t J 7.5 2H) 4.05 (t J 6.7 2H) 4.90–5.05 (m 2H) 5.27–5.43 (m 2H) and 5.73–5.87 (m 1H); dC 14.0 22.6 25.0 25.9 27.1 27.2 28.6 28.9 28.95 29.0 29.1 29.15 29.2 29.3 29.4 29.5 29.55 29.65 29.7 31.9 33.7 34.3 64.3 114.1 129.7 129.9 139.0 and 173.8; m/z () 420 (53) 392 (12) 283 (33) 264 (67) 222 (35) 138 (84) 97 (86) 83 (93) and 55 (100) (Found C 79.8; H 12.6.C28H52O2 requires C 79.9; H 12.45). Undec-10-enyl oleate 4b. The title ester (96) was a colourless oil; nmax/cm21 3060 2985 2910 2840 1730 1635 1460 1170 990 910 and 725; dH 0.88 (t J 6.6 3H) 1.20–1.40 (m, J. Chem. Soc. Perkin Trans. 1 1997 2871 32H) 1.55–1.68 (m 4H) 1.95–2.09 (m 6H) 2.29 (t J 7.5 2H) 4.05 (t J 6.7 2H) 4.90–5.05 (m 2H) 5.30–5.42 (m 2H) and 5.75–5.88 (m 1H); dC 14.0 22.6 25.0 25.9 27.1 27.2 28.6 28.9 28.95 29.0 29.1 29.2 29.25 29.3 29.35 29.4 29.5 29.6 29.65 29.7 31.9 33.75 34.3 64.3 114.1 129.7 129.9 139.05 and 173.8; m/z () 434 (46) 406 (10) 283 (28) 264 (66) 222 (37) 152 (77) 97 (88) 83 (91) and 55 (100) (Found C 79.9; H 12.2.C29H54O2 requires C 80.1; H 12.5). Dec-9-enyl (E)-hex-3-enoate 6a. This ester (84) was a colourless oil; nmax/cm21 3060 3020 2920 2840 1730 1630 1460 1160 990 965 and 910; dH 0.96 (t J 7.5 3H) 1.22–1.42 (m 10H) 1.55–1.67 (m 2H) 1.98–2.10 (m 4H) 2.99 (d J 6.2 2H) 4.04 (t J 6.7 2H) 4.87–5.03 (m 2H) 5.43–5.63 (m 2H) and 5.72–5.86 (m 1H); dC 13.5 25.5 26.0 28.7 29.0 29.1 29.3 29.4 33.9 38.2 64.7 114.2 120.9 136.2 139.1 and 172.5; m/z () 252 (46) 251 (32) 224 (6) 138 (70) 114 (79) 97 (83) 83 (85) and 55 (100) (Found C 76.4; H 11.0. C16H28O2 requires C 76.1; H 11.2). Undec-10-enyl (E)-hex-3-enoate 6b. The title ester (95) was a colourless oil; nmax/cm21 3060 3020 2915 2840 1730 1630 1460 1160 990 965 and 910; dH 0.98 (t J 7.5 3H) 1.20–1.44 (m 12H) 1.55–1.68 (m 2H) 1.98–2.11 (m 4H) 3.02 (d J 6.0 2H) 4.07 (t J 6.7 2H) 4.90–5.03 (m 2H) 5.45–5.66 (m 2H) and 5.74–5.88 (m 1H); dC 13.4 25.5 25.8 28.5 28.9 29.0 29.2 29.3 29.4 33.7 38.1 64.5 114.1 120.7 136.2 139.2 and 172.3; m/z () 266 (60) 265 (48) 238 (11) 152 (76) 124 (61) 114 (94) 97 (94) 83 (100) and 55 (96) (Found C 76.7; H 11.4.C17H30O2 requires C 76.6; H 11.35). Representative procedure for the synthesis of macrolactones Nonadec-10-en-19-olide 3a. Ruthenium catalyst 1 (9.3 mg 0.01 mmol) was dissolved in a three-necked flask in benzene (80 cm3) in a glove bag at room temperature. The diene ester 2a (191 mg 0.593 mmol) was added to the resulting light orange–brown solution via a syringe under argon atmosphere and the mixture was then heated at 60 8C for 24 h. After cooling the mixture was quenched by exposure to air and concentrated under reduced pressure.The residue was separated by column chromatography silica gel No 60 Merck hexane– dichloromethane (2 1 to 1 2) to give after elution of unchanged 2a (25 mg 13) the olide 3a as a colourless oil in two fractions first fraction 60 mg Z/E (80 20 by GC); second fraction 85 mg Z/E (40 60 by GC); total 145 mg 83 yield Z/E (57 43); nmax/cm21 3050 2920 2840 1730 1460 1165 965 w (weak) for first and m (medium) for second fraction 735 and 720 (m for both fractions); dH 1.20–1.42 (m 20H) 1.55– 1.70 (m 4H) 1.96–2.08 (m 4H) 2.315 (t J 6.9 CH2CO2) and 2.33 (t J 6.6 CH2CO2) 4.10 (t J 6.2 CO2CH2) and 4.12 (t J 5.9 CO2CH2) and 5.26–5.41 (m 2H); dC 24.9 25.1 26.0 26.2 26.4 26.5 27.3 27.35 27.5 27.55 28.1 28.15 28.4 28.45 28.5 28.6 28.65 28.75 28.8 28.9 29.0 29.1 29.2 29.3 29.4 29.45 31.7 31.8 34.1 34.75 64.2 64.25 130.0 130.05 130.6 130.7 174.0 and 174.05; m/z () 294 (20) 276 (10) 149 (46) 137 (47) 123 (84) 109 (95) 95 (99) 81 (99) and 55 (100) (Found C 77.4; H 11.5.C19H34O2 requires C 77.5; H 11.65). Eicos-10-en-20-olide 3b. Addition of the diene 2b (130 mg 0.387 mmol) to a benzene solution of the Ru catalyst 1 (15 mg 0.016 mmol) according to the above described procedure gave after separation of the resulting mixture by PTLC silica gel hexane–CH2Cl2 (1:2) unchanged 2b (10 mg 8) and the olide 3b as a colourless oil 12c in two fractions first fraction 55 mg Z/E (73 27 by GC); second fraction 42 mg Z/E (43 57 by GC); total 97 mg 82 yield Z/E (60 40); nmax/cm21 3070 2920 2840 1730 1460 1170 965 (m for both fractions) 735sh and 720 (m for first and w for second fraction); dH(first fraction) 1.22–1.41 (m 22H) 1.55–1.70 (m 4H) 1.93–2.06 (m 4H) 2.31 (t J 6.7 2H) 4.10 (t J 5.9 2H) and 5.31–5.36 (m 2H); dH- (second fraction) 1.22–1.41 (m 22H) 1.55–1.70 (m 4H) 1.93– 2.06 (m 4H) 2.31 (t J 6.7 2H) 4.10 (t J 5.9 CO2CH2) and 4.12 (t J 5.5 CO2CH2) and 5.30–5.38 (m 2H); dC 25.2 25.75 25.8 26.0 26.15 26.5 26.6 27.7 27.9 27.95 28.3 28.4 28.45 28.5 28.55 28.65 28.7 28.8 28.9 29.0 29.1 29.15 29.2 29.35 29.4 29.45 29.5 29.55 31.7 31.95 34.5 34.8 64.0 64.2 130.0 130.1 130.6 130.9 173.9 and 174.0; m/z () 308 (22) 290 (8) 110 (86) 96 (84) 82 (100) 55 (79) and 54 (85).Octadec-9-en-18-olide 5a. Reaction of the diene 4a (244 mg 0.581 mmol) with the catalyst 1 (4.25 mg 0.0046 mmol) gave after purification by column chromatography and after the elution of the unchanged ester 4a (64 mg 26) the olide 5a as a colourless oil 12c (106 mg 65) not separated by GC; nmax/cm21 3060 2920 2850 1730 1460 1170 965 730sh and 720; dH 1.18–1.45 (m 18H) 1.56–1.70 (m 4H) 1.96–2.09 (m 4H) 2.31 (t J 6.8 2H) 4.11 (t J 5.4 2H) and 5.25–5.40 (m 2H); dC 25.3 25.9 26.1 26.3 26.35 27.1 27.2 27.8 27.9 28.1 28.6 28.8 28.85 28.9 28.95 29.05 29.1 29.15 29.2 29.3 29.4 29.5 29.6 29.65 32.0 32.1 34.9 35.0 64.2 64.6 130.1 130.3 130.6 130.8 174.0 and 174.1; m/z () 280 (62) 262 (28) 252 (12) 149 (30) 137 (48) 123 (6) 109 (68) 95 (78) 82 (88) and 55 (100).Nonadec-9-en-19-olide 5b. Reaction of the diene 4b (174 mg 0.4 mmol) with the catalyst 1 (7.3 mg 0.079 mmol) gave after elution of the unchanged 4b (25 mg 14) the olide 5b as a colourless oil in two fractions first fraction 48 mg Z/E (71:29 by GC); second fraction 26 mg Z/E (42 58 by GC); total 74 mg 63 yield Z/E (61 39); nmax/cm21 3060 2910 2840 1730 1460 1170 965 735sh and 720; dH 1.55–1.45 (m 20H) 1.55– 1.70 (m 4H) 1.92–2.10 (m 4H) 2.32 (t J 6.7 2H) 4.12 (t J 6.1 2H) and 5.25–5.40 (m 2H); dC 24.9 25.3 25.4 25.5 25.9 26.5 27.0 27.4 27.9 28.0 28.05 28.1 28.2 28.4 28.5 28.6 28.7 28.8 28.9 29.05 29.1 29.3 29.4 29.5 29.55 29.7 31.6 32.3 34.6 34.8 63.8 64.1 129.9 130.0 130.6 130.9 173.85 and 173.9; m/z () 294 (13) 276 (6) 149 (62) 123 (60) 109 (91) 95 (98) 81 (100) 55 (99) (Found C 77.3; H 11.6.C19H34O2 requires C 77.5; H 11.65). Dodec-3-en-12-olide 7a. Reaction of the diene 6a (167 mg 0.663 mmol) with 1 (9 mg 0.0097 mmol) gave after separation by column chromatography the unchanged ester 6a (110 mg 66) followed by the olide 7a as colourless oil 4c,f (8 mg 6) dH 1.22–1.46 (m 10H) 1.55–1.66 (m 2H) 1.98–2.11 (m 2H) 3.01 (d J 6.1) 4.08 (t J 5.0) and 5.52–5.95 (m 2H); m/z () 196 (8) 149 (34) 137 (52) 123 (67) 110 (79) 96 (94) 82 (96) and 55 (100).Finally a complex mixture (27 mg) was eluted. Attempted preparation of tridec-3-en-13-olide 7b. Reaction of the diene 6b (151 mg 0.568 mmol) with 1 (8 mg 0.0086 mmol) gave after separation by column chromatography unchanged 6b (103 mg 68) followed by a complex mixture (25 mg). Acknowledgements We gratefully acknowledge the generous gift of the Ru catalyst 1 by Prof. R. H. Grubbs (California Institute of Technology). References 1 Preliminary communication K.E. Litinas and B. E. Salteris presented at the 17th Hellenic Chemical Congress Patra 1996 Abstrs. p. 144. 2 (a) R. H. Thomson The Chemistry of Natural Products Blackie Glasgow 1986 p. 119; (b) W. B. Turner and D. C. Aldridge Fungal Metabolites II Academic Press London 1983 p. 176; (c) K. Nakanishi T. Goto S. Ito S. Natori and S. Nozoe Natural Products Chemistry Academic Press New York 1974 vol. 2 p. 299. 3 (a) M. Kerschbaum Ber. Deutsch. Chem. Ges. 1927 60B 902; (b) H. Brockmann and W. Henkel Naturwissenschaften 1950 37 138; (c) J. Taskinen and L. Nykanen Acta Chem. Scand. Ser. B 1975 29 757; (d) K. Hanson J. A. O’Neill T. J. Simpson and C. L. Willis J. Chem. Soc. Perkin Trans. 1 1994 2493; (e) A. J. Carnell G. Casy G. Gorins A. Kompany-Saeid R. McCague H. F. Olivo S. M. Roberts and A.J. Willets J. Chem. Soc. Perkin Trans. 1 1994 3431; ( f ) S. D. Rychnovsky and K. Hwang J. Org. Chem. 1994 59 5414. 4 (a) T. Hamada K. Daikai R. Irie and T. Katsuki Tetrahedron Asymmetry 1995 6 2441; (b) G. H. Vecchio and A. C. 2872 J. Chem. Soc. Perkin Trans. 1 1997 Oehlschlager J. Org. Chem. 1994 59 4853; (c) C. D. J. Boden J. Chambers and I. D. R. Stevens Synthesis 1993 411; (d) E. Keinan S. K. Sinka and S. P. Singh Tetrahedron 1991 47 4631; (e) Y. Naoshima A. Nakamura Y. Munakata M. Kamezawa and H. Tachibana Bull. Chem. Soc. Jpn. 1990 63 1263; ( f ) K. J. G. Millar A. C. Oeschlager and J. W. Wong J. Org. Chem. 1983 48 4404. 5 (a) W. Keller-Schierlein Fortschr. Chem. Org. Naturst. 1973 30 313; (b) S. Masamune G. S. Bates and J. W. Corcoran Angew. Chem. Int. Ed.Engl. 1977 16 585; (c) K. C. Nicolaou Tetrahedron 1977 33 683; (d) T. G. Back Tetrahedron 1977 33 3041; (e) S. Masamune and P. A. McCarthy in Macrolides ed. S. Omura Academic Press New York 1984 ch. 4; ( f) M. M. Mansuri and I. Paterson Tetrahedron 1985 41 3569; (g) C. J. Roxburgh Tetrahedron 1995 51 9567. 6 S. Omura Macrolide Antibiotics Academic Press Orlando 1984 p. 3. 7 D. Vazquez in Antibiotics III. Mechanism of Action of Antimicrobial and Antitumor Agents ed. J. W. Corcoran and F. E. Hahn Springer New York 1975 p. 459; M. Binder and C. Tamm Angew. Chem. Int. Ed. Engl. 1973 12 370; S. B. Carter Endeavour 1972 31 77. 8 S. Abe T. Eto and Y. Tsujito Cosmet. Perfum. 1973 88 67; B. D. Mookherjee and R. A. Wilson in Fragrance Chemistry ed. E. T. Theimer Academic Press Orlando 1982 p.443; P. Kraft and W. Tochtermann Liebigs Ann. Chem. 1994 1161. 9 E. J. Corey D. J. Brunelle and K. C. Nicolaou J. Am. Chem. Soc. 1977 99 7359; L. Ruzicka and M. Stoll Helv. Chim. Acta 1928 11 1159. 10 M. Stoll and A. Rouve Helv. Chim. Acta 1934 17 1283; K. Steliou and M.-A. Poupart J. Am. Chem. Soc. 1983 105 7130; E. J. Corey and K. C. Nicolaou J. Am. Chem. Soc. 1974 96 5614; T. Kurihara Y. Nakajima and O. Mitsunobu Tetrahedron Lett. 1976 2455; G. Voss and H. Gerlach Helv. Chim. Acta 1983 66 2994; J. Inanaga K. Hirata H. Saeki T. Katsuki and M. Yamaguchi Bull. Chem. Soc. Jpn. 1979 52 1989. 11 (a) B. M. Trost and T. R. Verhoeven J. Am. Chem. Soc. 1977 99 3867; (b) B. M. Trost S. Matsubara and J. J. Caringi J. Am. Chem. Soc. 1989 111 8745; (c) H. J. Bestmann and R. Schobert Angew. Chem.Int. Ed. Engl. 1983 22 780; (d) G. E. Keck A. Paslani and S. F. McHardy J. Org. Chem. 1994 59 3113. 12 (a) D. Villemin Tetrahedron Lett. 1980 21 1715; (b) J. Tsuji and S. Hashiguchi Tetrahedron Lett. 1980 21 2955; (c) J. Tsuji and S. Hashiguchi J. Organometal. Chem. 1981 218 69. 13 (a) K. J. Ivin Olefin Metathesis Academic Press New York 1983; (b) R. H. Grubbs and S. H. Pine in Comprehensive Organic Synthesis ed. B. M. Trost Pergamon New York 1991 vol. 5 ch. 9.3; (c) R. H. Grubbs S. J. Miller and G. C. Fu Acc. Chem. Res. 1995 28 446; (d) H. G. Schmalz Angew. Chem. 1995 107 1981. 14 B. M. Novak and R. H. Grubbs J. Am. Chem. Soc. 1988 110 960; B. M. Novak and R. H. Grubbs J. Am. Chem. Soc. 1988 110 7542; R. H. Grubbs and W. Tumas Science 1989 243 907; G. C. Bazan E. Khosravi R. R.Schrock W. J. Feast V. C. Gibson M. B. O’Regan J. K. Thomas and W. M. Davis J. Am. Chem. Soc. 1990 112 8378; G. C. Bazan J. K. Oskam H. C. Cho L. Y. Park and R. R. Schrock J. Am. Chem. Soc. 1991 113 6899; B. M. Novak W. Risse and R. H. Grubbs Adv. Polym. Sci. 1992 102 47; M. A. Hillmyer C. Lepetit D. V. McGrath B. M. Novak and R. H. Grubbs Macromolecules 1992 25 3345; S. T. Nguyen L. K. Johnson and R. H. Grubbs J. Am. Chem. Soc. 1992 114 3974; R. R. Schrock in Ring Opening Polymerization ed. D. J. Brunnel Hawer Munich 1993 p. 129; S. T. Nguyen and R. H. Grubbs J. Am. Chem. Soc. 1993 115 9858; P. E. Schwab M. B. France R. H. Grubbs and J. W. Ziller Angew. Chem. Int. Ed. Engl. 1995 34 2039; C. Fraser and R. H. Grubbs Macromolecules 1995 28 7248; A. W. Stumpf E. Saive A. Demonceau and A.F. Noels J. Chem. Soc. Chem. Commun. 1995 1127; M. D. Lynn S. Kanaoka and R. H. Grubbs J. Am. Chem. Soc. 1996 118 784. 15 (a) G. C. Fu and R. H. Grubbs J. Am. Chem. Soc. 1992 114 5426; (b) G. C. Fu and R. H. Grubbs J. Am. Chem. Soc. 1992 114 7324; (c) G. C. Fu and R. H. Grubbs J. Am. Chem. Soc. 1993 115 3800; (d) G. C. Fu S. T. Nguyen and R. H. Grubbs J. Am. Chem. Soc. 1993 115 9856; (e) O. Fujimura G. C. Fu and R. H. Grubbs J. Org. Chem. 1994 59 4029; ( f) S. Kim N. Bowden and R. H. Grubbs J. Am. Chem. Soc. 1994 116 1081; (g) S. J. Miller S. Kim Z. Chen and R. H. Grubbs J. Am. Chem. Soc. 1995 117 2108; (h) S. J. Miller and R. H. Grubbs J. Am. Chem. Soc. 1995 117 5855; (i) C. M. Huwe O. C. Kiehl and S. Blechert Synlett 1996 65; ( j) O. Fujimura and R. H. Grubbs J. Am. Chem. Soc.1996 118 2499; (k) S. Kim W. J. Zuercher N. B. Bowden and R. H. Grubbs J. Org. Chem. 1996 61 1073. 16 O. Fujimura G. C. Fu P. W. K. Rothemund and R. H. Grubbs J. Am. Chem. Soc. 1995 117 2355; R. R. Schrock J. S. Murdzek G. C. Bazan J. Robbins M. DiMare and M. O’Regan J. Am. Chem. Soc. 1990 112 3875; R. R. Schrock R. T. DePue J. Feldman C. J. Schowerien J. C. Dewan and A. H. Liu J. Am. Chem. Soc. 1988 110 1423; A. Aguero J. Kress and J. A. Osborn J. Chem. Soc. Chem. Commun. 1985 793; J. Couturier C. Paillet M. Leconte J. M. Basset and K. Weiss Angew. Chem. Int. Ed. Engl. 1992 31 628. 17 B. C. Borer S. Deerenberg H. Bierangel and U. K. Pandit Tetrahedron Lett. 1994 35 3191; S. F. Martin Y. Liao H.-J. Chen M. Patzel and M. N. Ramser Tetrahedron Lett. 1994 35 6005; S. A. Wagman and S.F. Martin Tetrahedron Lett. 1995 36 1169; A. F. Houri Z. Xu D. A. Cogan and A. H. Hoveyda J. Am. Chem. Soc. 1995 117 2943; P. Bertinato E. J. Sorensen D. Meng and S. J. Danishefsky J. Org. Chem. 1996 61 8000; K. C. Nicolaou Yen He D. Vourloumis H. Vallberg and Z. Yang Angew. Chem. Int. Ed. Engl. 1996 35 2399. 18 Preparation and characterization of catalyst 1 S. T. Nguyen L. K. Johnson R. H. Grubbs and J. W. Ziller J. Am. Chem. Soc. 1992 114 3974; S. T. Nguyen R. H. Grubbs and J. W. Ziller J. Am. Chem. Soc. 1993 115 9858. 19 G. C. Fu R. H. Grubbs K. E. Litinas and S. T. Nguyen unpublished results. 20 A. Furstner and K. Langemann J. Org. Chem. 1996 61 3942. Paper 7/02353G Received 7th April 1997 Accepted 29th May 1997 J. Chem. Soc. Perkin Trans. 1 1997 2869 Unsaturated macrocyclic lactone synthesis via catalytic ring-closing metathesis 1 Konstantinos E.Litinas * and Basil E. Salteris Laboratory of Organic Chemistry Aristotle University of Thessaloniki 54006 Thessaloniki Greece Ring-closing metathesis (RCM) of the terminal diene esters 2a,b with the Ru catalyst 1 results in the formation of the 20- 21-membered macrolactones 3a,b in high yields. RCM of the diene oleate esters 4a,b with 1 gives the 19- 20-membered macrolactones 5a,b in good yields while an analogous reaction of the diene ‚,„-unsaturated ester 6a gives the 13-membered lactone 7a in low yield. Macrocyclic lactones are important components of naturally occurring compounds,2,3 many of them insects pheromones.4 They possess a range of significant biological activity,5 (e.g. antibiotic,3e,6 antifungal,5c antitumour cytostatic,7 oestrogenic and anabolic 2a,5c) as well as being used as fragrances.8 There are several multi-step syntheses of these compounds in moderate to high yields,5 which include the following ring enlargement of smaller rings,9 lactonization of w-hydroxycarboxylic acids 10 with different reagents CC bond formation by intramolecular addition of enolate ion with Pd0 catalyst,11a intramolecular diacetylene ester coupling,11b by intramolecular Wittig 11c or Horner–Emmons11d reactions and by olefin metathesis using WCl6–Me4Sn12a or WCl6–Cp2TiMe2 12b,c or WOCl4–Cp2- TiMe2 12c as catalysts.Recent progress in the development of well-defined metathesis catalysts with a single component has extended the use of olefin metathesis 13 in polymer chemistry through ring-opening metathesis polymerization (ROMP),14 in organic synthesis 15,16 and in natural products synthesis.17 Ring-closing metathesis (RCM) of dienes,15 especially with the very efficient Ru catalyst 1,13b,18 is a general method for the construction of unsaturated carbocycles and heterocycles (Scheme 1).In continuation of our efforts 19 to synthesize 6- and 7- membered unsaturated lactones we report here our results for the preparation of 19- 20- 21- 13- and 14-membered macrolactones from RCM of acyclic diene esters with the Ru catalyst 1 (Schemes 2–4). All diene esters were prepared from commercially available materials (Scheme 5) by simple esterifi- cation. Dec-9-enyl undec-10-enoate 2a prepared in 78 yield by esterification of dec-9-enol with undec-10-enoic acid in the presence of conc.H2SO4 as catalyst in refluxing benzene for 5 h in a Dean–Stark trap was heated with a benzene solution of the catalyst 1 (1.7 mol) at 60 8C for 24 h under an argon atmosphere. Purification of the crude product by column chromatography gave the 20-membered macrolactone 3a (83) together with the first-eluted unchanged ester 2a (13). Compound 3a extracted in two fractions was a mixture of Z- and E-isomers (ratio 57 43 as indicated by GC analysis). The first fraction Z/E (80 20) by GC showed in the IR spectrum more intense absorption for cis- (720 cm21) than for trans- (965 cm21) Scheme 1 (X) (CH2)n R1 R2 (CH2)n (X) R1 P(Cy)3 Ru P(Cy)3 Ph Ph Cl Cl 1–5 mol X = O NR CH2; n = 1,2,3,4 1 isomer in comparison to the IR spectrum of the second fraction Z/E (40 60) by GC.An analogous reaction (Scheme 2) of the diene ester 2b (prepared in 94 yield by esterification for 5 h of the corresponding alcohol and acid) with a benzene solution of 1 (4 mol) gave after purification by PTLC unchanged ester 2b (8) and the 21-membered unsaturated lactone 3b (82). This lactone (eluted as two fractions) was also a mixture of Z- and E-isomers (IR absorptions 720 and 965 cm21 respectively) in a total ratio of 60 40 (by GC). In the first fraction the ratio was 73 27 (GC) and in the second 43 57. The 1H NMR spectrum of the first fraction showed signals at d 4.10 (t 2 H J 5.9 CO2CH2) and 5.31–5.36 (m 2 H CH CH) for the Z-isomer whilst the second fraction showed two triplets at 4.10 (J 5.9 CO2CH2) and 4.11 (J 5.5 CO2CH2) for the Z- and E-isomers respectively and a multiplet at 5.30–5.38 (CH CH) for both isomers.The 13C NMR spectrum of the first fraction showed signals at 173.9 ppm (COO) 130.9 and 130.6 (CH CH-) 64.0 (COOCH2-) and 34.5 ppm (CH2COO) for the Z- isomer as indicated from the more intense signals of the spectrum and that of the second spectrum showed similar signals together with others at 174.0 130.1 130.0 64.2 and 34.8 ppm for the E-isomer. The lactone 3b has previously been prepared 12c by Tsuji and Hashigushi (12 yield) by olefin metathesis of the same ester 2b with WOCl4 (20 mol)–Cp2TiMe2 (24 mol). Such macrolactonization gives from commercially available materials large-ring compounds in high yields by a simple twostep procedure. RCM of dec-9-enyl oleate 4a (prepared in 79 yield from esterification of dec-9-enol and oleic acid) with the catalyst 1 (0.8 mol) (Scheme 3) gave after column chromatography the 19-membered unsaturated lactone 5a (65).The lactone 5a was obtained as an inseparable (by GC) mixture of Z- and E-isomers (IR absorption at 720 and 965 cm21). This lactone was prepared 12c earlier (18 yield) from RCM of dec-9-enyl oleate with WCl6 (20 mol)–Cp2TiMe2 (24 mol). The ester 4b (prepared in 96 yield from undec-10-enol and oleic acid) with 1 (2 mol; Scheme 3) gave the 20-membered ring lactone 5b (63) together with unchanged starting ester Scheme 2 Reagents and conditions 1 (1.7 4 mol) C6H6 60 8C 24 h C (CH2)8 O (CH2)n O 2a,b 2,3a n = 8 (83) b n = 9 (82) O C O (CH2)8 (CH2)n 3a,b 2870 J. Chem. Soc. Perkin Trans. 1 1997 (14). This lactone eluted in two fractions as a mixture of Z- and E-isomers in a total ratio of 61 39 (by GC).In the first fraction the ratio was 71 29 (GC) while in the second it was 42 58 (GC). Thus in RCM the oleate esters give lower yields than the undec-10-enoate esters probably because of steric hindrance by the non-9-enyl moiety in the former. This behaviour is in accord with previous observations that 1 is more effective with terminal dienes.15b RCM of dec-9-enyl (E)-hex-3-enoate 6a prepared in 84 yield from esterification of dec-9-enol and (E)-hex-3-enoic acid with a benzene solution of 1 (1.5 mol) gave after column chromatography first unchanged 6a (66) followed by the known4c,f 13-membered lactone 7a (6) and then a complex mixture. The lactone 7a is an aggregation pheromone of the flat grain beetle Cryptolestes pusillus.4f Attempted preparation of the 14-membered lactone 7b from the diene ester 6b prepared in 95 yield from undec-10-enol and (E)-hex-3-enoic acid and 1 (1.5 mol) gave only a complex mixture eluted after unchanged 6b (68).The low yield in the preparation of the 13- membered lactone 7a could be attributed to the possible unproductive complexation of Ru with the b,g-double bond of the hex-3-enoate and the ester carbonyl and to steric hindrance of the propenyl ester moiety. In conclusion RCM of diene esters is an excellent method for macrolactone formation especially for terminal alkenes. The yield of this reaction is decreased with increasing steric hindrance and the possible complexation of the double bond the Ru atom and the ester carbonyl. Parallel work appeared very recently in the literature 20 in Scheme 3 Reagents and conditions 1 (0.8 2 mol) C6H6 60 8C 24 h C (CH2)7 O (CH2)n O O C O (CH2)7 (CH2)n (CH2)7CH3 4a,b 5a,b 4,5a n = 8 (65) b n = 9 (63) Scheme 4 Reagents and conditions 1 (1.5 mol) C6H6 60 8C 24 h O C O (CH2)n O (CH2)n C O 6a,b 7a,b 6,7a n = 8 (6) b n = 9 Scheme 5 Reagents and conditions i C6H6 reflux (Dean–Stark trap) Cat.conc. H2SO4 5 h Yields 78–96 (CH2)8 CO2H HO(CH2)n (CH2)8 CO2 (CH2)n + i n = 8,9 (CH2)7CO2H (CH2)7CH3 + HO(CH2)n i n = 8,9 (CH2)7CO2 (CH2)7CH3 (CH2)n 2a,b 4a,b COOH + HO(CH2)n i n = 8,9 COO (CH2)n 6a,b which the 21-membered lactone 3b was synthesized (71 yield; 82 in our preparation) by using the catalyst 1 (4 mol) and the ester 2b in dichloromethane solution. Experimental IR spectra were run as films on a Perkin–Elmer 1310 spectrophotometer.1H NMR spectra were recorded on a Bruker 300 AM (300 MHz) spectrometer with CDCl3 as a solvent with SiMe4 as internal standard. J Values are given in Hz. 13C NMR spectra were obtained at 75.5 MHz in CDCl3 solutions with SiMe4 as internal reference. Mass spectra were determined on a VG-250 spectrometer (70 eV). GC analyses were performed with a SS column packed with 20 Carbowax 20 M (3.78 g) on Chromosorb W AW DMCS 60/80 mesh (10 ft × 1/8 in). The acids and alcohols used were commercial products of Aldrich Chem. Co. Inc. The Ru catalyst 1 was prepared according to a published procedure.18 Benzene was distilled under argon atmosphere with benzophenone ketyl and was degassed before use under anhydrous conditions. Catalyst and solvent transfers in the reaction flask were made under argon atmosphere by using a glove bag.All reactions were carried out under an argon atmosphere. General procedure for the synthesis of the diene esters 2a,b 4a,b and 6a,b The acid (0.02 mol) was added in a benzene (30 cm3) solution of the alcohol (0.03 mol) followed by 5 drops of conc. H2SO4. After the mixture had been heated under reflux in a Dean–Stark trap for 5 h most of the benzene was removed and the residue was poured onto Et2O (25 cm3) and washed with water (15 cm3). The aqueous layer was separated and extracted with Et2O (15 cm3) and the combined organic layer and extracts were washed with 5 aqueous NaHCO3 (20 cm3) and with water (cm3) dried (Na2SO4) and concentrated under reduced pressure. Column chromatography silica gel No 60 Merck hexane–dichloromethane (4 1) of the residue gave at first the corresponding diene ester followed by a small amount of unchanged alcohol.Dec-9-enyl undec-10-enoate 2a. This ester (78) was a colourless oil; nmax/cm21 3070 2920 2840 1730 1632 1460 1170 990 910 740 and 720; dH 1.21–1.43 (m 20H) 1.55–1.7 (m 4H) 1.98–2.1 (m 4H) 2.29 (t J 7.5 2H) 4.05 (t J 6.7 2H) 4.9–5.03 (m 4H) and 5.76–5.88 (m 2H); dC 25.0 25.9 28.6 28.8 28.9 29.0 29.05 29.1 29.15 29.2 29.25 29.3 29.4 33.75 34.4 64.3 114.1 139.1 and 173.9; m/z () 322 (57) 304 (9) 184 (54) 166 (62) 138 (77) 110 (74) 96 (88) 83 (94) and 55 (100) (Found C 78.4; H 11.8. C21H38O2 requires C 78.2; H 11.9). Undec-10-enyl undec-10-enoate 2b. The title ester (94) as a colourless oil;12c nmax/cm21 3060 2920 2840 1730 1630 1460 1170 990 900 and 725; dH 1.22–1.45 (m 22H) 1.56–1.69 (m 4H) 1.98–2.08 (m 4H) 2.29 (t J 7.5 2H) 4.05 (t J 6.7 2H) 4.88–5.05 (m 4H) and 5.72–5.88 (m 2H); dC 24.9 25.8 28.6 28.65 28.7 28.8 28.9 28.95 29.0 29.1 29.2 29.25 29.3 29.5 33.6 34.2 64.1 114.0 138.8 and 173.4; m/z () 336 (50) 318 (7) 184 (55) 166 (62) 152 (69) 124 (71) 110 (75) 96 (90) 82 (95) and 55 (100).Dec-9-enyl oleate 4a. This ester (79) was a colourless oil; nmax/cm21 3060 2980 2920 2840 1730 1635 1460 1170 990 910 and 725; dH 0.88 (t J 6.6 3H) 1.18–1.42 (m 30H) 1.54– 1.68 (m 4H) 1.94–2.01 (m 6H) 2.29 (t J 7.5 2H) 4.05 (t J 6.7 2H) 4.90–5.05 (m 2H) 5.27–5.43 (m 2H) and 5.73–5.87 (m 1H); dC 14.0 22.6 25.0 25.9 27.1 27.2 28.6 28.9 28.95 29.0 29.1 29.15 29.2 29.3 29.4 29.5 29.55 29.65 29.7 31.9 33.7 34.3 64.3 114.1 129.7 129.9 139.0 and 173.8; m/z () 420 (53) 392 (12) 283 (33) 264 (67) 222 (35) 138 (84) 97 (86) 83 (93) and 55 (100) (Found C 79.8; H 12.6.C28H52O2 requires C 79.9; H 12.45). Undec-10-enyl oleate 4b. The title ester (96) was a colourless oil; nmax/cm21 3060 2985 2910 2840 1730 1635 1460 1170 990 910 and 725; dH 0.88 (t J 6.6 3H) 1.20–1.40 (m, J. Chem. Soc. Perkin Trans. 1 1997 2871 32H) 1.55–1.68 (m 4H) 1.95–2.09 (m 6H) 2.29 (t J 7.5 2H) 4.05 (t J 6.7 2H) 4.90–5.05 (m 2H) 5.30–5.42 (m 2H) and 5.75–5.88 (m 1H); dC 14.0 22.6 25.0 25.9 27.1 27.2 28.6 28.9 28.95 29.0 29.1 29.2 29.25 29.3 29.35 29.4 29.5 29.6 29.65 29.7 31.9 33.75 34.3 64.3 114.1 129.7 129.9 139.05 and 173.8; m/z () 434 (46) 406 (10) 283 (28) 264 (66) 222 (37) 152 (77) 97 (88) 83 (91) and 55 (100) (Found C 79.9; H 12.2.C29H54O2 requires C 80.1; H 12.5). Dec-9-enyl (E)-hex-3-enoate 6a. This ester (84) was a colourless oil; nmax/cm21 3060 3020 2920 2840 1730 1630 1460 1160 990 965 and 910; dH 0.96 (t J 7.5 3H) 1.22–1.42 (m 10H) 1.55–1.67 (m 2H) 1.98–2.10 (m 4H) 2.99 (d J 6.2 2H) 4.04 (t J 6.7 2H) 4.87–5.03 (m 2H) 5.43–5.63 (m 2H) and 5.72–5.86 (m 1H); dC 13.5 25.5 26.0 28.7 29.0 29.1 29.3 29.4 33.9 38.2 64.7 114.2 120.9 136.2 139.1 and 172.5; m/z () 252 (46) 251 (32) 224 (6) 138 (70) 114 (79) 97 (83) 83 (85) and 55 (100) (Found C 76.4; H 11.0. C16H28O2 requires C 76.1; H 11.2). Undec-10-enyl (E)-hex-3-enoate 6b. The title ester (95) was a colourless oil; nmax/cm21 3060 3020 2915 2840 1730 1630 1460 1160 990 965 and 910; dH 0.98 (t J 7.5 3H) 1.20–1.44 (m 12H) 1.55–1.68 (m 2H) 1.98–2.11 (m 4H) 3.02 (d J 6.0 2H) 4.07 (t J 6.7 2H) 4.90–5.03 (m 2H) 5.45–5.66 (m 2H) and 5.74–5.88 (m 1H); dC 13.4 25.5 25.8 28.5 28.9 29.0 29.2 29.3 29.4 33.7 38.1 64.5 114.1 120.7 136.2 139.2 and 172.3; m/z () 266 (60) 265 (48) 238 (11) 152 (76) 124 (61) 114 (94) 97 (94) 83 (100) and 55 (96) (Found C 76.7; H 11.4.C17H30O2 requires C 76.6; H 11.35). Representative procedure for the synthesis of macrolactones Nonadec-10-en-19-olide 3a. Ruthenium catalyst 1 (9.3 mg 0.01 mmol) was dissolved in a three-necked flask in benzene (80 cm3) in a glove bag at room temperature. The diene ester 2a (191 mg 0.593 mmol) was added to the resulting light orange–brown solution via a syringe under argon atmosphere and the mixture was then heated at 60 8C for 24 h. After cooling the mixture was quenched by exposure to air and concentrated under reduced pressure.The residue was separated by column chromatography silica gel No 60
机译:J. Chem. Soc. Perkin Trans. 1 1997 2869 通过催化闭环复分解合成不饱和大环内酯 1 Konstantinos E. Litinas * and Basil E. Salteris Laboratory of Organic Chemistry, Aristotle University of Thessaloniki 54006 希腊塞萨洛尼基 用Ru催化剂1对末端二烯酯2a,b进行闭环复分解(RCM),形成20-21元大内酯3a,b 高产。二烯油酸酯 4a,b 与 1 的 RCM 得到 19-20 元大内酯 5a,b 的产率高,而二烯‚,„-不饱和酯 6a 的类似反应得到 13-20 元大内酯 5a,b 的低产率。大环内酯是天然化合物的重要组成部分,2,3其中许多是昆虫信息素.4它们具有一系列重要的生物活性,5(例如抗生素,3e,6抗真菌,5c抗肿瘤细胞抑制,7雌激素和合成代谢2a,5c)以及用作香料.8这些化合物有几种中等到高产率的多步骤合成,5 包括以下较小环的环扩大,9 w-羟基羧酸的内酯化 10 与不同的试剂 C]C 键通过烯醇酸根离子与 Pd0 催化剂的分子内加成形成,11a 分子内二乙炔酯偶联,11b 通过分子内 Wittig 11c 或 Horner-Emmons11d 反应以及使用 WCl6-Me4Sn12a 或 WCl6-Cp2TiMe2 12b 的烯烃复分解,c或WOCl4–Cp2-TiMe2 12c作为催化剂。最近开发具有单一组分的明确复分解催化剂的进展已经扩展了烯烃复分解 13 在高分子化学中的应用,通过开环复分解聚合 (ROMP),14 在有机合成 15,16 和天然产物合成中.17 二烯的闭环复分解 (RCM),15 特别是使用非常高效的 Ru 催化剂 1,13b,18 是构建不饱和碳环和杂环的通用方法(方案 1)。为了继续我们19合成6元和7元不饱和内酯的努力,我们在这里报告了我们用Ru催化剂1从无环二烯酯的RCM中制备19元、20元、21元、13元和14元大内酯的结果(方案2-4)。所有二烯酯均由市售材料(方案5)通过简单的酯化制备。Dec-9-enyl undec-10-enoate 2a在conc存在下,将dec-9-烯醇与undec-10-enoic acid酯化,以78%的收率制备。H2SO4作为催化剂在Dean-Stark捕集器中回流苯5小时,在氩气气氛下用催化剂1的苯溶液(1.7mol%)在60 8C下加热24小时。通过柱层析纯化粗产物得到20元大内酯3a(83%)和第一次洗脱的未改变酯2a(13%)。在两个馏分中提取的化合物3a是Z-和E-异构体的混合物(GC分析表明的比例为57,43)。第一部分 [Z/E (80, 20) by GC] 在红外光谱中显示顺式 (720 cm21) 的吸收比反式 (965 cm21) 更强 方案 1 (X) (CH2)n R1 R2 (CH2)n (X) R1 P(Cy)3 Ru P(Cy)3 Ph Ph Cl Cl 1–5 mol% X = O NR CH2;n = 1,2,3,4 1 异构体与第二馏分 [Z/E (40, 60) by GC] 的 IR 光谱相比。二烯酯2b(通过相应的醇和酸酯化5小时制备的收率为94%的)与苯溶液1(4mol%)的类似反应(方案2),通过PTLC纯化后得到不变酯2b(8%)和21元不饱和内酯3b(82%)。该内酯(洗脱为两个馏分)也是Z-和E-异构体的混合物(IR吸收率分别为720和965cm21),总比为60 40(通过GC)。在第一个分数中,比率为73 27(GC),在第二个分数中为43 57。第1组分的1H NMR谱图显示Z-异构体在d 4.10(t 2 H J 5.9 CO2CH2)和5.31–5.36(m 2 H CH]] CH)处的信号,而第二组分显示Z-异构体和E-异构体分别为4.10 (J 5.9 CO2CH2)和4.11 (J 5.5 CO2CH2)的两个三联体,两种异构体的多重体分别为5.30–5.38 (CH]] CH)。从光谱中更强的信号所示,第一部分的13C NMR谱图显示Z-异构体的信号为173.9 ppm(COO)、130.9和130.6(CH]] CH-)、64.0 (COOCH2-)和34.5 ppm(CH2COO),第二谱图的信号与174.0、130.1、130.0、64.2和34的信号相似。E-异构体为 8 ppm。内酯3b先前已由Tsuji和Hashigushi(产率为12%)通过烯烃复分解与WOCl4(20mol%)–Cp2TiMe2(24mol%)制备了12c。这种大内酯化通过简单的两步程序从市售材料中以高产率获得大环化合物。用催化剂1(0.8 mol%)(方案3)将癸-9-烯基油酸酯4a(由癸-9-烯醇和油酸酯化制备,收率为79%)的RCM(方案3)在柱层析后得到19元不饱和内酯5a(65%)。内酯5a是Z-和E-异构体的不可分离(通过GC)混合物(在720和965 cm21处的IR吸收)。该内酯是用 WCl6 (20 mol%)–Cp2TiMe2 (24 mol%) 的 dec-9-烯基油酸酯的 RCM 在 12c 前制备的(产率为 18%)。酯4b(由十一烯醇和油酸制备,收率为96%)与1(2mol%;方案 3) 得到 20 元环内酯 5b (63%) 与不变的起始酯 方案 2 试剂和条件 1 (1.7 4 mol%) C6H6 60 8C 24 h C (CH2)8 O (CH2)n O 2a,b 2,3a n = 8 (83%) b n = 9 (82%) O C O (CH2)8 (CH2)n 3a,b 2870 J. Chem. Soc. Perkin Trans. 1 1997 (14%).该内酯以 Z-和 E 异构体的混合物分两组次洗脱,总比例为 61 39(通过 GC)。在第一个分数中,比率为71 29(GC),而在第二个分数中,该比率为42 58(GC)。因此,在RCM中,油酸酯的产率低于十一烯-10-烯酸酯,这可能是由于前者中非9-烯基部分的空间位阻。这种行为与先前的观察结果一致,即1对末端二烯烃更有效.15b RCM癸-9-烯基(E)-己-3-烯酸酯6a[以84%的收率制备的dec-9-烯醇和(E)-己-3-烯酸酯化制备],柱层析后首先得到不变的6a(66%),然后是已知的4c,f 13元内酯7a(6%),然后是复杂的混合物。内酯 7a 是扁平粒甲虫 Cryptolestes pusillus 的聚集信息素.4f 尝试从二烯酯 6b 制备 14 元内酯 7b [以 95% 的收率制备的 undec-10-烯醇和 (E)-己-3-烯酸] 和 1 (1.5 mol%) 仅得到在未改变的 6b (68%) 后洗脱的复杂混合物。制备13元内酯7a的低产率可归因于Ru与己-3-烯酸酯和酯羰基的b,g-双键的非生产性络合以及丙烯基酯部分的空间位阻。总之,二烯酯的RCM是形成大内酯的极好方法,特别是对于末端烯烃。该反应的产率随着空间位阻的增加以及双键 Ru 原子和酯羰基的可能络合而降低。最近,文献中出现了平行工作 20 方案 3 试剂和条件 1 (0.8 2 mol%) C6H6 60 8C 24 h C (CH2)7 O (CH2)n O O C O (CH2)7 (CH2)n (CH2)7CH3 4a,b 5a,b 4,5a n = 8 (65%) b n = 9 (63%) 方案 4 试剂和条件 1 (1.5 mol%) C6H6 60 8C 24 h O C O (CH2)n O (CH2)n C O6a,b 7a,b 6,7a n = 8 (6%) b n = 9 方案 5 试剂和条件 i C6H6 反流(Dean-Stark 陷阱) Cat.浓度H2SO4 5 小时 产量 78–96% (CH2)8 CO2H HO(CH2)n (CH2)8 CO2 (CH2)n + i n = 8,9 (CH2)7CO2H (CH2)7CH3 + HO(CH2)n i n = 8,9 (CH2)7CO2 (CH2)7CH3 (CH2)n 2a,b 4a,b COOH + HO(CH2)n i n = 8,9 COO (CH2)n 6a,b 其中 21 元内酯 3b 是使用 催化剂 1 (4 mol%) 合成的 (71% 产率;我们制备的 82%) 和酯2B在二氯甲烷溶液中。实验红外光谱在 Perkin-Elmer 1310 分光光度计上以胶片形式运行。在布鲁克 300 AM (300 MHz) 波谱仪上记录 1H NMR 谱图,以 CDCl3 为溶剂,SiMe4 为内标。J 值以 Hz 为单位。 13C NMR 波谱是在 75.5 MHz 的 CDCl3 溶液中以 SiMe4 作为内部参比获得的。在VG-250光谱仪(70 eV)上测定质谱。使用装有 20% Carbowax 20 M (3.78 g) 的 SS 色谱柱在 Chromosorb W AW DMCS 60/80 目(10 英尺× 1/8 英寸)上进行 GC 分析。使用的酸和醇是Aldrich Chem. Co. Inc.的商业产品。根据已公布的程序制备Ru催化剂1。18 苯在氩气气氛下用二苯甲酮进行蒸馏,并在无水条件下使用前脱气。反应瓶中的催化剂和溶剂转移是在氩气气氛下使用手套袋进行的。所有反应均在氩气气氛下进行。合成二烯酯2a,b,4a,b和6a,b的一般方法将酸(0.02mol)加入到苯(30cm3)的醇(0.03mol)溶液中,然后加入5滴浓缩物H 2 SO 4。将混合物在Dean-Stark捕集器中回流加热5小时后,除去大部分苯,并将残留物倒入Et2O(25cm3)上并用水(15cm3)洗涤。分离水层并用Et2O(15 cm3)提取,合并后的有机层和提取物用5%NaHCO3水溶液(20 cm3)洗涤,并用水(cm3)干燥(Na2SO4)干燥并减压浓缩。柱层析[硅胶No 60 Merck己烷-二氯甲烷(4,1)]的残留物首先得到相应的二烯酯,然后是少量未改变的醇。Dec-9-烯基十一烯-10-烯酸酯 2a.这种酯(78%)是一种无色油;Nmax/cm21、3070、2920、2840、1730、1632、1460、1170、990、910、740和720;dH 1.21–1.43 (m 20H)、1.55–1.7 (m 4H)、1.98–2.1 (m 4H)、2.29 (t J 7.5 2H)、4.05 (t J 6.7 2H)、4.9–5.03 (m 4H) 和 5.76–5.88 (m 2H);dC 25.0、25.9、28.6、28.8、28.9、29.0、29.05、29.1、29.15、29.2、29.25、29.3、29.4、33.75、34.4、64.3、114.1、139.1 和 173。9;m/z (%):322 (57)、304 (9)、184 (54)、166 (62)、138 (77)、110 (74)、96 (88)、83 (94) 和 55 (100) (发现 C 78.4;H 11.8.C21H38O2 需要 C 78.2;H 11.9%)。十一-10-烯基十一烯酸十一烯酸酯 2b.标题酯(94%)为无色油;12c Nmax/cm21、3060、2920、2840、1730、1630、1460、1170、990、900 和 725;dH 1.22–1.45 (m 22H)、1.56–1.69 (m 4H)、1.98–2.08 (m 4H)、2.29 (t J 7.5 2H)、4.05 (t J 6.7 2H)、4.88–5.05 (m 4H) 和 5.72–5.88 (m 2H);dC 24.9、25.8、28.6、28.65、28.7、28.8、28.9、28.95、29.0、29.1、29.2、29.2、29.2、29.5、33.6、34.2、64.1、114.0、138.8 和 173.4;M/Z (%):336 (50)、318 (7)、184 (55)、166 (62)、152 (69)、124 (71)、110 (75)、96 (90)、82 (95) 和 55 (100)。Dec-9-烯基油酸酯 4a.这种酯类(79%)是一种无色油;Nmax/cm21、3060、2980、2920、2840、1730、1635、1460、1170、990、910和725;dH 0.88 (t J 6.6 3H), 1.18–1.42 (m 30H), 1.54–1.68 (m 4H), 1.94–2.01 (m 6H), 2.29 (t J 7.5 2H), 4.05 (t J 6.7 2H), 4.90–5.05 (m 2H), 5.27–5.43 (m 2H) 和 5.73–5.87 (m 1H);dC 14.0、22.6、25.0、25.9、27.1、27.2、28.6、28.9、28.95、29.0、29.1、29.1、29.2、29.3、29.4、29.5、29.55、29.65、29.7、31.9、33.7、34.3、64.3、114.1、129.7、129.9、139.0和173.8;m/z (%) 420 (53) 392 (12) 283 (33) 264 (67) 222 (35) 138 (84) 97 (86) 83 (93) 和 55 (100) (发现 C 79.8;H 12.6.C28H52O2 需要 C 79.9;H 12.45%)。十一-10-烯基油酸酯 4b。标题酯(96%)是一种无色油;Nmax/cm21、3060、2985、2910、2840、1730、1635、1460、1170、990、910和725;dH 0.88 (t J 6.6 3H) 1.20–1.40 (m, J. Chem. Soc. Perkin Trans. 1 1997 2871 32H) 1.55–1.68 (m 4H) 1.95–2.09 (m 6H) 2.29 (t J 7.5 2H) 4.05 (t J 6.7 2H)、4.90–5.05 (m 2H)、5.30–5.42 (m 2H) 和 5.75–5.88 (m 1H);dC 14.0、22.6、25.0、25.9、27.1、27.2、28.6、28.9、28.95、29.0、29.1、29.2、29.25、29.3、29.35、29.4、29.5、29.6、29.65、29.7、31.9、33.75、34.3、64.3、114.1、129.7、129.9、139.05和173.8;m/z (%) 434 (46) 406 (10) 283 (28) 264 (66) 222 (37) 152 (77) 97 (88) 83 (91) 和 55 (100) (发现 C 79.9;H 12.2.C29H54O2 要求 C 80.1;H 12.5%)。12-9-烯基 (E)-己-3-烯酸酯 6a.该酯(84%)为无色油;Nmax/cm21、3060、3020、2920、2840、1730、1630、1460、1160、990、965和910;dH 0.96 (t J 7.5 3H) 1.22–1.42 (m 10H), 1.55–1.67 (m 2H), 1.98–2.10 (m 4H), 2.99 (d J 6.2 2H), 4.04 (t J 6.7 2H), 4.87–5.03 (m 2H), 5.43–5.63 (m 2H) 和 5.72–5.86 (m 1H);dC 13.5、25.5、26.0、28.7、29.0、29.1、29.3、29.4、33.9、38.2、64.7、114.2、120.9、136.2、139.1 和 172.5;m/z (%) 252 (46)、251 (32)、224 (6)、138 (70)、114 (79)、97 (83)、83 (85) 和 55 (100) (发现 C 76.4;H 11.0 中。C16H28O2 需要 C 76.1;H 11.2%)。十一-10-烯基 (E)-己-3-烯酸酯 6b.标题酯(95%)是一种无色油;Nmax/cm21、3060、3020、2915、2840、1730、1630、1460、1160、990、965和910;dH 0.98 (t J 7.5 3H), 1.20–1.44 (m 12H), 1.55–1.68 (m 2H), 1.98–2.11 (m 4H), 3.02 (d J 6.0, 2H), 4.07 (t J 6.7, 2H), 4.90–5.03 (m 2H), 5.45–5.66 (m 2H) 和 5.74–5.88 (m 1H);dC 13.4、25.5、25.8、28.5、28.9、29.0、29.2、29.3、29.4、33.7、38.1、64.5、114.1、120.7、136.2、139.2 和 172.3;m/z (%) 266 (60) 265 (48) 238 (11), 152 (76), 124 (61), 114 (94), 97 (94), 83 (100) 和 55 (96) (发现 C 76.7;H 11.4.C17H30O2 需要 C 76.6;H 11.35%)。大内酯Nonadec-10-en-19-olide 3a的代表性合成方法。在室温下将钌催化剂1(9.3mg,0.01mmol)溶解在手套袋中的苯(80cm3)中的三口烧瓶中。将二烯酯2a(191mg,0.593mmol)在氩气气氛下通过注射器加入到所得的浅橙褐色溶液中,然后将混合物在60 8C下加热24小时。通过柱层析[硅胶No 60 Merck己烷-二氯甲烷(2 1至1 2)]分离残留物,在洗脱不变的2a(25mg 13%)后,内脂3a为无色油,分两部分[第一组分60 mg Z/E(GC为80 20);第二组分为85 mg Z/E(GC为40 60);总产量为145 mg,收率为83%,Z/E(57 43)];Nmax/cm21 3050 2920 2840 1730 1460 1165 965 [第一分数的W(弱)和第二分数的M(中)] 735和720(两个分数的M);dH 1.20–1.42 (m 20H)、1.55– 1.70 (m 4H)、1.96–2.08 (m 4H)、2.315 (t J 6.9 CH2CO2) 和 2.33 (t J 6.6 CH2CO2)、4.10 (t J 6.2 CO2CH2) 和 4.12 (t J 5.9 CO2CH2) 和 5.26–5.41 (m 2H);dC 24.9 25.1 26.0 26.2 26.4 26.5 27.3 27.35 27.5 27.55 28.1 28.15 28.4 28.45 28.5 28.6 28.65 28.75 28.8 28.9 29.0 29.1 29.2 29.3 29.4 29.45 31.7 31.8 34.1 34.75 64.2 64.25 130.0 130.05 130.6 130.7 174.0 和 174.05;m/z (%) 294 (20) 276 (10) 149 (46) 137 (47) 123 (84) 109 (95) 95 (99) 81 (99) 和 55 (100) (发现 C 77.4;H 11.5.C19H34O2 需要 C 77。5;H 11.65%)。Eicos-10-en-20-olide 3b.根据上述程序,将二烯2b(130mg 0.387mmol)加入到Ru催化剂1(15mg 0.016mmol)的苯溶液中,在PTLC [硅胶己烷-CH2Cl2 (1:2)]不变的2b(10mg,8%)和内脂3b作为无色油12c分两次分离后给出;第二部分42mg Z / E(73,27 by GC);第二馏分42mg Z / E(43 57 通过 GC);总量 97 mg 82% 产率 Z/E (60 40)];Nmax/cm21 3070 2920 2840 1730 1460 1170 965 (m 用于两个分数) 735SH 和 720 (m 用于第一分数,W 用于第二分数);dH(第一分数):1.22-1.41 (m 22H)、1.55-1.70 (m 4H)、1.93-2.06 (m 4H)、2.31 (t J 6.7 2H)、4.10 (t J 5.9 2H) 和 5.31-5.36 (m 2H);dH-(第二分数):1.22-1.41(m 22H)、1.55-1.70(m 4H)、1.93-2.06(m 4H)、2.31(t J 6.7 2H)、4.10(t J 5.9 CO2CH2)和4.12(t J 5.5 CO2CH2)和5.30-5.38(m 2H);dC 25.2 25.75 25.8 26.0 26.15 26.5 26.6 27.7 27.9 27.95 28.3 28.4 28.45 28.5 28.55 28.65 28.7 28.8 28.9 29.0 29.1 29.15 29.2 29.35 29.4 29.45 29.5 29.55 31.7 31.95 34.5 34.8 64.0 64.2 130.0 130.1 130.6 130.9 173.9 和 174.0;M/Z (%):308 (22)、290 (8)、110 (86)、96 (84)、82 (100)、55 (79) 和 54 (85)。十八烷-9-烯-18-内酯 5a.二烯4a(244mg 0.581mmol)与催化剂1(4.25mg 0.0046 mmol)通过柱层析纯化后,在洗脱不变的酯4a(64mg 26%)后,得到无色油12c(106mg 65%),未通过GC分离;Nmax/cm21、3060、2920、2850、1730、1460、1170、965、730SH 和 720;dH 1.18–1.45 (m 18H)、1.56–1.70 (m 4H)、1.96–2.09 (m 4H)、2.31 (t J 6.8 2H)、4.11 (t J 5.4 2H) 和 5.25–5.40 (m 2H);dC 25.3 25.9 26.1 26.3 26.35 27.1 27.2 27.8 27.9 28.1 28.6 28.8 28.85 28.9 28.95 29.05 29.1 29.15 29.2 29.3 29.4 29.5 29.6 29.65 32.0 32.1 34.9 35.0 64.2 64.6 130.1 130.3 130.6 130.8 174.0 和 174.1;M/Z (%):280 (62)、262 (28)、252 (12)、149 (30)、137 (48)、123 (6)、109 (68)、95 (78)、82 (88) 和 55 (100)。Nonadec-9-en-19-olide 5b.二烯4b(174mg,0.4mmol)与催化剂1(7.3mg,0.079mmol)的反应,在洗脱不变的4b(25mg,14%)后,内脂5b为无色油,分为两部分[第一组分48mg Z/E(GC为71:29);第二组分26mg Z/E(GC为42,58);总产量为74mg,收率为Z/E(61,39)];Nmax/cm21、3060、2910、2840、1730、1460、1170、965、735SH 和 720;dH 1.55–1.45 (m 20H)、1.55–1.70 (m 4H)、1.92–2.10 (m 4H)、2.32 (t J 6.7 2H)、4.12 (t J 6.1 2H) 和 5.25–5.40 (m 2H);dC 24.9 25.3 25.4 25.5 25.9 26.5 27.0 27.4 27.9 28.0 28.05 28.1 28.2 28.4 28.5 28.6 28.7 28.8 28.9 29.05 29.1 29.3 29.4 29.5 29.55 29.7 31.6 32.3 34.6 34.8 63.8 64.1 129.9 130.0 130.6 130.9 173.85 和 173.9;m/z (%) 294 (13) 276 (6) 149 (62) 123 (60) 109 (91) 95 (98) 81 (100) 55 (99) (发现 C 77.3;H 11.6.C19H34O2 需要 C 77。5;H 11.65%)。十二烷-3-烯-12-内脂 7a.二烯6a(167mg,0.663mmol)与1(9mg,0.0097mmol)的反应,通过柱层析分离后得到不变的酯6a(110mg,66%),然后是无色油4c,f(8mg,6%),dH,1.22-1.46(m 10H),1.55-1.66(m 2H),1.98-2.11(m 2H),3.01(d J,6.1),4.08(t J,5.0)和5.52-5.95(m 2H);M/Z (%):196 (8)、149 (34)、137 (52)、123 (67)、110 (79)、96 (94)、82 (96) 和 55 (100)。最后洗脱复杂的混合物(27mg)。尝试制备 tridec-3-en-13-olide 7b。将二烯6b(151mg,0.568mmol)与1(8mg,0.0086mmol)反应,通过柱层析分离后得到不变的6b(103mg,68%),然后是复合混合物(25mg)。致谢 我们衷心感谢 R. H. Grubbs 教授(加州理工学院)慷慨赠送的 Ru 催化剂 1。参考文献 1 初步通讯 K.E. Litinas 和 B. E. Salteris 在第 17 届希腊化学大会上提出 Patra 1996 Abstrs.第144页。2 (a) R. H. Thomson,《天然产物的化学》,Blackie,格拉斯哥,1986年,第119页;(b) W.B.Turner和D.C.Aldridge,《真菌代谢物II》,学术出版社,伦敦,1983年,第176页;(c) K. Nakanishi, T. Goto, S. Ito, S. Natori and S. Nozoe, Natural Products, Chemistry, Academic Press, New York, 1974, vol. 2, p. 299.3 (a) M. Kerschbaum Ber.德语。Chem. Ges.1927 年 60B 902;(b) H.Brockmann和W.Henkel Naturwissenschaften,1950年,第37页,第138页;(c) J. Taskinen 和 L. Nykanen Acta Chem. Scand. Ser.乙 1975 29 757;(d) K. Hanson, J. A. O'Neill, T. J. Simpson and C. L. Willis, J. Chem. Soc. Perkin, Trans. 1, 1994, 2493;(e) A.J.卡内尔、G.卡西、G.戈林斯、A.孔帕尼-赛义德、R.麦卡格、H.F.奥利沃、S.M.罗伯茨和A.J.威利茨、J.Chem.Soc.Perkin译本,1994年,第3431页;( f ) S. D. Rychnovsky 和 K. Hwang J. Org. Chem. 1994, 59, 5414.4 (a) T. Hamada, K. Daikai, R. Irie 和 T. Katsuki, 四面体不对称, 1995, 6, 2441;(b) G. H. Vecchio and A. C. 2872 J. Chem. Soc. Perkin, Trans. 1, 1997 Oehlschlager, J. Org. Chem., 1994, 59, 4853;(c) C.D.J.Boden、J.钱伯斯和I.D.R.Stevens,《综合》,1993年,第411页;(d) E. Keinan, S. K. Sinka, and S. P. Singh, Tetrahedron, 1991, 47, 4631;(e) Y. Naoshima、A. Nakamura、Y. Munakata、M. Kamezawa 和 H. Tachibana Bull。化学学报, Jpn., 1990, 63, 1263;( f ) K. J. G. Millar, A. C. Oeschlager 和 J. W. Wong, J. Org. Chem. 1983, 48, 4404.5 (a) W. Keller-Schierlein, Fortschr.Chem. Org. Naturst.1973 30 313;(b) S. Masamune, G. S. Bates和J. W. Corcoran Angew.Chem.国际教育,1977,16,585;(c) K. C. Nicolaou,《四面体》,1977年,第33页,第683页;(d) T.G.返回 四面体 1977 33 3041;(e) S. Masamune 和 P. A. McCarthy in Macrolides, ed. S. Omura Academic Press, New York, 1984, ch. 4;( f) M. M. Mansuri 和 I. Paterson,《四面体》,1985 41 3569;(g) C. J. Roxburgh,四面体,1995年,51:9567。6 S. Omura,大环内酯类抗生素,学术出版社,奥兰多,1984年,第3页。7 D. Vazquez 在抗生素 III.抗菌剂和抗肿瘤剂的作用机制,J. W. Corcoran和F. E.Hahn Springer,纽约,1975 年,第 459 页;M. Binder 和 C. Tamm Angew。Chem. Int. Ed. Engl. 1973, 12, 370;SB Carter,奋进 1972,31:77。8 S. Abe、T. Eto 和 Y. Tsujito Cosmet。性能。1973 88 67;B. D. Mookherjee 和 R. A. Wilson,在《香水化学》中,E. T. Theimer 学术出版社,奥兰多,1982 年,第 443 页;P. Kraft 和 W. Tochtermann,Liebigs,Ann. Chem.,1994 年,1161 年。9 E. J. Corey, D. J. Brunelle 和 K. C. Nicolaou, J. Am. Chem. Soc., 1977, 99, 7359;L. Ruzicka 和 M. Stoll Helv。噗噗。学报, 1928, 11, 1159.10 M. Stoll 和 A. Rouve Helv。噗噗。学报 1934, 17, 1283;K. Steliou 和 M.-A.Poupart J. Am. Chem. Soc. 1983, 105, 7130;E. J. Corey 和 K. C. Nicolaou, J. Am. Chem. Soc. 1974, 96, 5614;T. Kurihara, Y. Nakajima 和 O. Mitsunobu Tetrahedron Lett. 1976, 2455;G. Voss 和 H. Gerlach Helv。噗噗。学报 1983, 66, 2994;J. Inanaga、K. Hirata、H. Saeki、T. Katsuki 和 M. Yamaguchi Bull。化学学会, 日本, 1979, 52, 1989.11 (a) B. M. Trost 和 T. R. Verhoeven, J. Am. Chem. Soc., 1977, 99, 3867;(b) B. M. Trost, S. Matsubara和J. J. Caringi, J. Am. Chem. Soc., 1989, 111, 8745;(c) H.J.Bestmann和R.Schobert Angew。Chem. Int. Ed. Engl., 1983, 22, 780;(d) G. E. Keck, A. Paslani 和 S. F. McHardy, J. Org. Chem., 1994, 59, 3113.12 (a) D. Villemin,《四面体》,1980年,第21页,第1715页;(b) J. Tsuji 和 S. Hashiguchi,《四面体》,1980 年,第 21 页,第 2955 页;(c) J. Tsuji和S. Hashiguchi, J. Organometal。化学, 1981, 218, 69.13 (a) K. J. Ivin Olefin,Metathesis Academic Press,纽约,1983年;(b) R.H.Grubbs和S.H.Pine in Comprehensive Organic Synthesis, ed. B. M. Trost, Pergamon, New York, 1991, vol. 5, ch. 9.3;(c) R. H. Grubbs, S. J. Miller, and G. C. Fu, Acc. Chem. Res. 1995, 28, 446;(d) H.G.施迈茨·昂格。化学, 1995, 107, 1981.14 B. M. Novak 和 R. H. Grubbs, J. Am. Chem. Soc., 1988, 110, 960;B. M. Novak 和 R. H. Grubbs, J. Am. Chem. Soc., 1988, 110, 7542;R. H. Grubbs 和 W. Tumas,科学,1989 年,243,907 年;G.C. Bazan, E. Khosravi, R. R. Schrock, W. J. Feast, V. C. Gibson, M. B. O'Regan, J. K. Thomas, and W. M. Davis, J. Am. Chem. Soc. 1990, 112, 8378;G. C. Bazan, J. K. Oskam, H. C. Cho, L. Y. Park 和 R. R. Schrock, J. Am. Chem. Soc. 1991, 113, 6899;B. M. Novak W. Risse 和 R. H. Grubbs Adv. Polym.科学, 1992, 102, 47;M. A. Hillmyer, C. Lepetit, D. V. McGrath, B. M. Novak 和 R. H. Grubbs, 大分子, 1992, 25, 3345;S. T. Nguyen, L. K. Johnson 和 R. H. Grubbs, J. Am. Chem. Soc., 1992, 114, 3974;R. R. Schrock,《开环聚合》,D. J. Brunnel Hawer编辑,慕尼黑,1993年,第129页;S. T. Nguyen 和 R. H. Grubbs, J. Am. Chem. Soc. 1993, 115, 9858;PE Schwab、MB France、RH Grubbs 和 JW Ziller Angew。Chem. Int. Ed. Engl. 1995, 34, 2039;C. Fraser 和 R. H. Grubbs,大分子,1995,28,7248;A. W. Stumpf、E.Saive、A. Demonceau 和 A. F. Noels、J. Chem. Soc. Chem. Commun.1995 1127;M. D. Lynn, S. Kanaoka 和 R. H. Grubbs, J. Am. Chem. Soc., 1996, 118, 784.15 (a) G. C. Fu 和 R. H. Grubbs, J. Am. Chem. Soc., 1992, 114, 5426;(b) G. C. Fu 和 R. H. Grubbs, J. Am. Chem. Soc., 1992, 114, 7324;(c) G.C.Fu和R.H.Grubbs, J. Am.化学学报, 1993, 115, 3800;(d) G. C. Fu, S. T. Nguyen and R. H. Grubbs, J. Am. Chem. Soc., 1993, 115, 9856;(e) O. Fujimura, G. C. Fu and R. H. Grubbs, J. Org. Chem., 1994, 59, 4029;( f) S. Kim, N. Bowden 和 R. H. Grubbs, J. Am. Chem. Soc., 1994, 116, 1081;(g) S. J. Miller、S. Kim、Z. Chen 和 R. H. Grubbs, J. Am. Chem. Soc., 1995, 117, 2108;(h) S. J. Miller和R. H. Grubbs, J. Am. Chem. Soc., 1995, 117, 5855;(i) C. M. Huwe、O. C. Kiehl 和 S. Blechert,Synlett,1996年,第65页;( j) O. Fujimura 和 R. H.Grubbs, J. Am. Chem. Soc., 1996, 118, 2499;(k) S. Kim, W. J. Zuercher, N. B. Bowden 和 R. H. Grubbs, J. Org. Chem., 1996, 61, 1073.16 O. Fujimura, G. C. Fu, P. W. K. Rothemund and R. H. Grubbs, J. Am. Chem. Soc., 1995, 117, 2355;R. R. Schrock, J. S. Murdzek, G. C. Bazan, J. Robbins, M. DiMare 和 M. O'Regan, J. Am. Chem. Soc. 1990, 112, 3875;R. R. Schrock, R. T. DePue, J. Feldman, C. J. Schowerien, J. C. Dewan 和 A. H. Liu, J. Am. Chem. Soc. 1988, 110, 1423;A. Aguero, J. Kress 和 J. A. Osborn, J. Chem. Soc. Chem. Commun.1985 793;J. Couturier、C. Paillet、M. Leconte、JM Basset 和 K. Weiss Angew。Chem. Int. Ed. Engl. 1992, 31 628.17 B. C. Borer, S. Deerenberg, H. Bierangel and U. K. Pandit, Tetrahedron Lett., 1994, 35, 3191;S. F. Martin Y. Liao H.-J.Chen, M. Patzel 和 M. N. Ramser, Tetrahedron Lett., 1994, 35, 6005;S.A. Wagman 和 S. F. Martin,《四面体》,1995 年,第 36 页,第 1169 页;A. F. Houri, Z. Xu, D. A. Cogan 和 A. H. Hoveyda, J. Am. Chem. Soc., 1995, 117, 2943;P. Bertinato, E. J. Sorensen, D. Meng 和 S. J. Danishefsky, J. Org. Chem.1996 61 8000;K. C. Nicolaou、Yen He、D. Vourloumis、H. Vallberg 和 Z. Yang Angew。Chem. Int. Ed. Engl. 1996, 35, 2399.18 催化剂的制备和表征 1, S. T. Nguyen, L. K. Johnson, R. H. Grubbs and J. W. Ziller, J. Am. Chem. Soc., 1992, 114, 3974;S. T. Nguyen, R. H. Grubbs 和 J. W. Ziller, J. Am. Chem. Soc. 1993, 115, 9858.19 G. C. Fu、R. H. Grubbs、K. E. Litinas 和 S. T. Nguyen,未发表的结果。20 A. Furstner 和 K. Langemann, J. Org. Chem., 1996, 61, 3942.论文 7/02353G 收稿日期:1997 年 4 月 7 日 录用日期:1997 年 5 月 29 日 J. Chem. Soc. Perkin Trans. 1 1997 2869 通过催化闭环复分解合成不饱和大环内酯 1 Konstantinos E.Litinas * 和 Basil E. Salteris 有机化学实验室,塞萨洛尼基亚里士多德大学 54006 希腊塞萨洛尼基 用 Ru 催化剂 1 对末端二烯酯 2a,b 进行闭环复分解 (RCM) 导致形成 20-21 元大内酯 3a,b 高产。二烯油酸酯 4a,b 与 1 的 RCM 得到 19-20 元大内酯 5a,b 的产率高,而二烯‚,„-不饱和酯 6a 的类似反应得到 13-20 元大内酯 5a,b 的低产率。大环内酯是天然化合物的重要组成部分,2,3 其中许多是昆虫信息素.4 它们具有一系列显着的生物活性,5 (例如抗生素、3e、6 抗真菌、5c 抗肿瘤细胞抑制、7 雌激素和合成代谢 2a、5c)以及用作香料。8 这些化合物有几种中等到高产率的多步合成,5 其中包括以下较小环的扩环,9 w-羟基羧酸的内酯化 10 用不同的试剂形成 C]C 键,通过分子内添加烯醇酸根离子与 Pd0 催化剂,11a 分子内二乙炔酯偶联,11b 通过分子内 Wittig 11c 或 Horner-Emmons11d 反应,以及使用 WCl6-Me4Sn12a 或 WCl6-Cp2TiMe2 12b 进行烯烃复分解,c 或 WOCl4–Cp2- TiMe2 12c 作为催化剂.8 ppm 用于 E-异构体。内酯3b先前已由Tsuji和Hashigushi(产率为12%)通过烯烃复分解与WOCl4(20mol%)–Cp2TiMe2(24mol%)制备了12c。这种大内酯化通过简单的两步程序从市售材料中以高产率获得大环化合物。用催化剂1(0.8 mol%)(方案3)将癸-9-烯基油酸酯4a(由癸-9-烯醇和油酸酯化制备,收率为79%)的RCM(方案3)在柱层析后得到19元不饱和内酯5a(65%)。内酯5a是Z-和E-异构体的不可分离(通过GC)混合物(在720和965 cm21处的IR吸收)。该内酯是用 WCl6 (20 mol%)–Cp2TiMe2 (24 mol%) 的 dec-9-烯基油酸酯的 RCM 在 12c 前制备的(产率为 18%)。酯4b(由十一烯醇和油酸制备,收率为96%)与1(2mol%;方案 3) 得到 20 元环内酯 5b (63%) 与不变的起始酯 方案 2 试剂和条件 1 (1.7 4 mol%) C6H6 60 8C 24 h C (CH2)8 O (CH2)n O 2a,b 2,3a n = 8 (83%) b n = 9 (82%) O C O (CH2)8 (CH2)n 3a,b 2870 J. Chem. Soc. Perkin Trans. 1 1997 (14%).该内酯以 Z-和 E 异构体的混合物分两组次洗脱,总比例为 61 39(通过 GC)。在第一个分数中,比率为71 29(GC),而在第二个分数中,该比率为42 58(GC)。最近,文献中出现了平行工作 20 方案 3 试剂和条件 1 (0.8 2 mol%) C6H6 60 8C 24 h C (CH2)7 O (CH2)n O O C O (CH2)7 (CH2)n (CH2)7CH3 4a,b 5a,b 4,5a n = 8 (65%) b n = 9 (63%) 方案 4 试剂和条件 1 (1.5 mol%) C6H6 60 8C 24 h O C O (CH2)n O (CH2)n C O6a,b 7a,b 6,7a n = 8 (6%) b n = 9 方案 5 试剂和条件 i C6H6 反流(Dean-Stark 陷阱) Cat.浓度H2SO4 5 小时 产量 78–96% (CH2)8 CO2H HO(CH2)n (CH2)8 CO2 (CH2)n + i n = 8,9 (CH2)7CO2H (CH2)7CH3 + HO(CH2)n i n = 8,9 (CH2)7CO2 (CH2)7CH3 (CH2)n 2a,b 4a,b COOH + HO(CH2)n i n = 8,9 COO (CH2)n 6a,b 其中 21 元内酯 3b 是使用 催化剂 1 (4 mol%) 合成的 (71% 产率;我们制备的 82%) 和酯2B在二氯甲烷溶液中。实验红外光谱在 Perkin-Elmer 1310 分光光度计上以胶片形式运行。在布鲁克 300 AM (300 MHz) 波谱仪上记录 1H NMR 谱图,以 CDCl3 为溶剂,SiMe4 为内标。J 值以 Hz 为单位。 13C NMR 波谱是在 75.5 MHz 的 CDCl3 溶液中以 SiMe4 作为内部参比获得的。在VG-250光谱仪(70 eV)上测定质谱。使用装有 20% Carbowax 20 M (3.78 g) 的 SS 色谱柱在 Chromosorb W AW DMCS 60/80 目(10 英尺× 1/8 英寸)上进行 GC 分析。使用的酸和醇是Aldrich Chem. Co. Inc.的商业产品。Ru催化剂1是根据公布的程序制备的.18苯在氩气气氛下与二苯甲酮酮酮进行蒸馏,并在无水条件下使用前脱气。反应瓶中的催化剂和溶剂转移是在氩气气氛下使用手套袋进行的。所有反应均在氩气气氛下进行。合成二烯酯2a,b,4a,b和6a,b的一般方法将酸(0.02mol)加入到苯(30cm3)的醇(0.03mol)溶液中,然后加入5滴浓缩物H 2 SO 4。将混合物在Dean-Stark捕集器中回流加热5小时后,除去大部分苯,并将残留物倒入Et2O(25cm3)上并用水(15cm3)洗涤。分离水层并用Et2O(15 cm3)提取,合并后的有机层和提取物用5%NaHCO3水溶液(20 cm3)洗涤,并用水(cm3)干燥(Na2SO4)干燥并减压浓缩。柱层析[硅胶No 60 Merck己烷-二氯甲烷(4,1)]的残留物首先得到相应的二烯酯,然后是少量未改变的醇。Dec-9-烯基十一烯-10-烯酸酯 2a.这种酯(78%)是一种无色油;Nmax/cm21、3070、2920、2840、1730、1632、1460、1170、990、910、740和720;dH 1.21–1.43 (m 20H)、1.55–1.7 (m 4H)、1.98–2.1 (m 4H)、2.29 (t J 7.5 2H)、4.05 (t J 6.7 2H)、4.9–5.03 (m 4H) 和 5.76–5.88 (m 2H);dC 25.0、25.9、28.6、28.8、28.9、29.0、29.05、29.1、29.15、29.2、29.25、29.3、29.4、33.75、34.4、64.3、114.1、139.1 和 173。大内酯Nonadec-10-en-19-olide 3a的代表性合成方法。在室温下将钌催化剂1(9.3mg,0.01mmol)溶解在手套袋中的苯(80cm3)中的三口烧瓶中。将二烯酯2a(191mg,0.593mmol)在氩气气氛下通过注射器加入到所得的浅橙褐色溶液中,然后将混合物在60 8C下加热24小时。冷却后,将混合物暴露在空气中淬火,并在减压下浓缩。通过柱层析[硅胶No 60 Merck己烷-二氯甲烷(2 1至1 2)]分离残留物,在洗脱不变的2a(25mg 13%)后,内脂3a为无色油,分两部分[第一组分60 mg Z/E(GC为80 20);第二组分为85 mg Z/E(GC为40 60);总产量为145 mg,收率为83%,Z/E(57 43)];Nmax/cm21 3050 2920 2840 1730 1460 1165 965 [第一分数的W(弱)和第二分数的M(中)] 735和720(两个分数的M);dH 1.20–1.42 (m 20H)、1.55– 1.70 (m 4H)、1.96–2.08 (m 4H)、2.315 (t J 6.9 CH2CO2) 和 2.33 (t J 6.6 CH2CO2)、4.10 (t J 6.2 CO2CH2) 和 4.12 (t J 5.9 CO2CH2) 和 5.26–5.41 (m 2H);dC 24.9 25.1 26.0 26.2 26.4 26.5 27.3 27.35 27.5 27.55 28.1 28.15 28.4 28.45 28.5 28.6 28.65 28.75 28.8 28.9 29.0 29.1 29.2 29.3 29.4 29.45 31.7 31.8 34.1 34.75 64.2 64.25 130.0 130.05 130.6 130.7 174.0 和 174.05;m/z (%) 294 (20) 276 (10) 149 (46) 137 (47) 123 (84) 109 (95) 95 (99) 81 (99) 和 55 (100) (发现 C 77.4;H 11.5.C19H34O2 需要 C 77。乙 1975 29 757;(d) K. Hanson, J. A. O'Neill, T. J. Simpson and C. L. Willis, J. Chem. Soc. Perkin, Trans. 1, 1994, 2493;(e) A.J.卡内尔、G.卡西、G.戈林斯、A.孔帕尼-赛义德、R.麦卡格、H.F.奥利沃、S.M.罗伯茨和A.J.威利茨,J.Chem.Soc.Perkin译本,1994年,第3431页;( f ) S. D. Rychnovsky 和 K. Hwang J. Org. Chem. 1994, 59, 5414.4 (a) T. Hamada, K. Daikai, R. Irie 和 T. Katsuki, 四面体不对称, 1995, 6, 2441;(b) G. H. Vecchio and A. C. 2872 J. Chem. Soc. Perkin Trans. 1 1997 Oehlschlager, J. Org. Chem.1994 59 4853;(c) C.D.J.Boden、J.钱伯斯和I.D.R.Stevens,《综合》,1993年,第411页;(d) E. Keinan, S. K. Sinka, and S. P. Singh, Tetrahedron, 1991, 47, 4631;(e) Y. Naoshima、A. Nakamura、Y. Munakata、M. Kamezawa 和 H. Tachibana Bull。化学学报, Jpn., 1990, 63, 1263;( f ) K. J. G. Millar, A. C. Oeschlager 和 J. W. Wong, J. Org. Chem. 1983, 48, 4404.5 (a) W. Keller-Schierlein, Fortschr.Chem. Org. Naturst.1973 30 313;(b) S. Masamune、G. S. Bates和J. W. Corcoran Angew。Chem. Int. Ed.Engl.1977 16 585;(c) K. C. Nicolaou,《四面体》,1977年,第33页,第683页;(d) T.G.返回 四面体 1977 33 3041;(e) S. Masamune 和 P. A. McCarthy in Macrolides, ed. S. Omura Academic Press, New York, 1984, ch. 4;( f) M. M. Mansuri 和 I. Paterson,《四面体》,1985 41 3569;(g) C. J. Roxburgh,四面体,1995年,51:9567。6 S. Omura,大环内酯类抗生素,学术出版社,奥兰多,1984年,第3页。7 D. Vazquez 在抗生素 III.《抗菌剂和抗肿瘤剂的作用机制》,J. W. Corcoran和F. E. Hahn编,Springer,纽约,1975年,第459页;M. Binder 和 C. Tamm Angew。Chem. Int. Ed. Engl. 1973, 12, 370;SB Carter,奋进 1972,31:77。8 S. Abe、T. Eto 和 Y. Tsujito Cosmet。性能。1973 88 67;B. D. Mookherjee 和 R. A. Wilson,在《香水化学》中,E. T. Theimer 学术出版社,奥兰多,1982 年,第 443 页;P. Kraft 和 W. Tochtermann,Liebigs,Ann. Chem.,1994 年,1161 年。9 E. J. Corey, D. J. Brunelle 和 K. C. Nicolaou, J. Am. Chem. Soc., 1977, 99, 7359;L. Ruzicka 和 M. Stoll Helv。噗噗。学报, 1928, 11, 1159.10 M. Stoll 和 A.鲁夫·赫尔夫(Rouve Helv)。噗噗。学报 1934, 17, 1283;K. Steliou 和 M.-A.Poupart J. Am. Chem. Soc. 1983, 105, 7130;E. J. Corey 和 K. C. Nicolaou, J. Am. Chem. Soc. 1974, 96, 5614;T. Kurihara, Y. Nakajima 和 O. Mitsunobu Tetrahedron Lett. 1976, 2455;G. Voss 和 H. Gerlach Helv。噗噗。学报 1983, 66, 2994;J. Inanaga、K. Hirata、H. Saeki、T. Katsuki 和 M. Yamaguchi Bull。化学学会, 日本, 1979, 52, 1989.11 (a) B. M. Trost 和 T. R. Verhoeven, J. Am. Chem. Soc., 1977, 99, 3867;(b) B. M. Trost, S. Matsubara和J. J. Caringi, J. Am. Chem. Soc., 1989, 111, 8745;(c) H.J.Bestmann和R.Schobert Angew。Chem.Int. Ed. Engl. 1983, 22, 780;(d) G. E. Keck, A. Paslani 和 S. F. McHardy, J. Org. Chem., 1994, 59, 3113.12 (a) D. Villemin,《四面体》,1980年,第21页,第1715页;(b) J. Tsuji 和 S. Hashiguchi,《四面体》,1980 年,第 21 页,第 2955 页;(c) J. Tsuji和S. Hashiguchi, J. Organometal。化学, 1981, 218, 69.13 (a) K. J. Ivin Olefin,Metathesis Academic Press,纽约,1983年;(b) R. H. Grubbs 和 S. H. Pine,《综合有机合成》,B. M. Trost 编,Pergamon,纽约,1991 年,第 5 卷,第 9.3 章;(c) R. H. Grubbs, S. J. Miller, and G. C. Fu, Acc. Chem. Res. 1995, 28, 446;(d) H.G.施迈茨·昂格。化学, 1995, 107, 1981.14 B. M. Novak 和 R. H. Grubbs, J. Am. Chem. Soc., 1988, 110, 960;B. M. Novak 和 R. H. Grubbs, J. Am. Chem. Soc., 1988, 110, 7542;R. H. Grubbs 和 W. Tumas,科学,1989 年,243,907 年;G. C. Bazan, E. Khosravi, R. R.Schrock, W. J. Feast, V. C. Gibson, M. B. O'Regan, J. K. Thomas, and W. M. Davis, J. Am. Chem. Soc., 1990, 112, 8378;G.C.巴赞J.K.Oskam, H. C., Cho, L. Y. Park, and R. R. Schrock, J. Am. Chem. Soc., 1991, 113, 6899;B. M. Novak W. Risse 和 R. H. Grubbs Adv. Polym.科学, 1992, 102, 47;M. A. Hillmyer, C. Lepetit, D. V. McGrath, B. M. Novak 和 R. H. Grubbs, 大分子, 1992, 25, 3345;S. T. Nguyen, L. K. Johnson 和 R. H. Grubbs, J. Am. Chem. Soc., 1992, 114, 3974;R. R. Schrock,《开环聚合》,D. J. Brunnel Hawer编辑,慕尼黑,1993年,第129页;S. T. Nguyen 和 R. H. Grubbs, J. Am. Chem. Soc. 1993, 115, 9858;PE Schwab、MB France、RH Grubbs 和 JW Ziller Angew。Chem. Int. Ed. Engl. 1995, 34, 2039;C. Fraser 和 R. H. Grubbs,大分子,1995,28,7248;A. W. Stumpf、E. Saive、A. Demonceau 和 A.F. Noels、J. Chem. Soc. Chem. Commun.1995 1127;M. D. Lynn, S. Kanaoka 和 R. H. Grubbs, J. Am. Chem. Soc., 1996, 118, 784.15 (a) G. C. Fu 和 R. H. Grubbs, J. Am. Chem. Soc., 1992, 114, 5426;(b) G. C. Fu 和 R. H. Grubbs, J. Am. Chem. Soc., 1992, 114, 7324;(c) G. C. Fu 和 R. H. Grubbs, J. Am. Chem. Soc., 1993, 115, 3800;(d) G. C. Fu, S. T. Nguyen and R. H. Grubbs, J. Am. Chem. Soc., 1993, 115, 9856;(e) O. Fujimura, G. C. Fu and R. H. Grubbs, J. Org. Chem., 1994, 59, 4029;( f) S. Kim, N. Bowden 和 R. H. Grubbs, J. Am. Chem. Soc., 1994, 116, 1081;(g) S. J. Miller、S. Kim、Z. Chen 和 R. H. Grubbs, J. Am. Chem. Soc., 1995, 117, 2108;(h) S. J. Miller和R. H. Grubbs, J. Am. Chem. Soc., 1995, 117, 5855;(i) C. M. Huwe、O. C. Kiehl 和 S. Blechert,Synlett,1996年,第65页;( j) O. Fujimura 和 R. H. Grubbs, J. Am. Chem. Soc.1996, 118, 2499;(k) S. Kim W. J.Zuercher, N. B. Bowden 和 R. H. Grubbs, J. Org. Chem., 1996, 61, 1073.16 O. Fujimura, G. C. Fu, P. W. K. Rothemund and R. H. Grubbs, J. Am. Chem. Soc., 1995, 117, 2355;R. R. Schrock, J. S. Murdzek, G. C. Bazan, J. Robbins, M. DiMare 和 M. O'Regan, J. Am. Chem. Soc. 1990, 112, 3875;R. R. Schrock, R. T. DePue, J. Feldman, C. J. Schowerien, J. C. Dewan 和 A. H. Liu, J. Am. Chem. Soc. 1988, 110, 1423;A. Aguero, J. Kress 和 J. A. Osborn, J. Chem. Soc. Chem. Commun.1985 793;J. Couturier、C. Paillet、M. Leconte、JM Basset 和 K. Weiss Angew。Chem. Int. Ed. Engl. 1992, 31 628.17 B. C. Borer, S. Deerenberg, H. Bierangel and U. K. Pandit, Tetrahedron Lett., 1994, 35, 3191;S. F. Martin Y. Liao H.-J.Chen, M. Patzel 和 M. N. Ramser, Tetrahedron Lett., 1994, 35, 6005;S. A. Wagman 和 S.F. Martin,《四面体》,1995 年,第 36 页,第 1169 页;A. F. Houri, Z. Xu, D. A. Cogan 和 A. H. Hoveyda, J. Am. Chem. Soc., 1995, 117, 2943;P. Bertinato, E. J. Sorensen, D. Meng 和 S. J. Danishefsky, J. Org. Chem., 1996, 61, 8000;K. C. Nicolaou、Yen He、D. Vourloumis、H. Vallberg 和 Z. Yang Angew。Chem. Int. Ed. Engl. 1996, 35, 2399.18 催化剂的制备和表征 1, S. T. Nguyen, L. K. Johnson, R. H. Grubbs and J. W. Ziller, J. Am. Chem. Soc., 1992, 114, 3974;S. T. Nguyen, R. H. Grubbs 和 J. W. Ziller, J. Am. Chem. Soc. 1993, 115, 9858.19 G. C. Fu、R. H. Grubbs、K. E. Litinas 和 S. T. Nguyen,未发表的结果。20 A. Furstner 和 K. Langemann, J. Org. Chem., 1996, 61, 3942.论文 7/02353G 1997 年 4 月 7 日收稿 1997 年 5 月 29 日录用 J. Chem. Soc.Perkin Trans. 1 1997 2869 通过催化闭环复分解合成不饱和大环内酯 1 Konstantinos E.Litinas * and Basil E. Salteris Laboratory of Organic Chemistry, Aristotle University of Thessaloniki 54006 希腊塞萨洛尼基 用 Ru 催化剂 1 对末端二烯酯 2a,b 进行闭环复分解 (RCM) 导致形成 20-21 元大内酯 3a,b 高产。二烯油酸酯 4a,b 与 1 的 RCM 得到 19-20 元大内酯 5a,b 的产率高,而二烯‚,„-不饱和酯 6a 的类似反应得到 13-20 元大内酯 5a,b 的低产率。大环内酯是天然化合物的重要组成部分,2,3其中许多是昆虫信息素.4它们具有一系列重要的生物活性,5(例如抗生素,3e,6抗真菌,5c抗肿瘤细胞抑制,7雌激素和合成代谢2a,5c)以及用作香料.8这些化合物有几种中等到高产率的多步合成,5 包括以下较小环的环扩大,9 w-羟基羧酸的内酯化 10 与不同的试剂 C]C 键通过烯醇酸根离子与 Pd0 催化剂的分子内加成形成,11a 分子内二乙炔酯偶联,11b 通过分子内 Wittig 11c 或 Horner-Emmons11d 反应以及使用 WCl6-Me4Sn12a 或 WCl6-Cp2TiMe2 12b 的烯烃复分解,c或WOCl4–Cp2-TiMe2 12c作为催化剂。最近开发具有单一组分的明确复分解催化剂的进展已经扩展了烯烃复分解 13 在高分子化学中的应用,通过开环复分解聚合 (ROMP),14 在有机合成 15,16 和天然产物合成中.17 二烯的闭环复分解 (RCM),15 特别是使用非常高效的 Ru 催化剂 1,13b,18 是构建不饱和碳环和杂环的通用方法(方案 1)。为了继续我们19合成6元和7元不饱和内酯的努力,我们在这里报告了我们用Ru催化剂1从无环二烯酯的RCM中制备19元、20元、21元、13元和14元大内酯的结果(方案2-4)。所有二烯酯均由市售材料(方案5)通过简单的酯化制备。Dec-9-enyl undec-10-enoate 2a在conc存在下,将dec-9-烯醇与undec-10-enoic acid酯化,以78%的收率制备。H2SO4作为催化剂在Dean-Stark捕集器中回流苯5小时,在氩气气氛下用催化剂1的苯溶液(1.7mol%)在60 8C下加热24小时。通过柱层析纯化粗产物得到20元大内酯3a(83%)和第一次洗脱的未改变酯2a(13%)。分两次提取的化合物3a是Z-和E-异构体的混合物(GC分析表明的比例为57 43).E-异构体为8 ppm。内酯3b先前已由Tsuji和Hashigushi(产率为12%)通过烯烃复分解与WOCl4(20mol%)–Cp2TiMe2(24mol%)制备了12c。这种大内酯化通过简单的两步程序从市售材料中以高产率获得大环化合物。用催化剂1(0.8 mol%)(方案3)将癸-9-烯基油酸酯4a(由癸-9-烯醇和油酸酯化制备,收率为79%)的RCM(方案3)在柱层析后得到19元不饱和内酯5a(65%)。内酯5a是Z-和E-异构体的不可分离(通过GC)混合物(在720和965 cm21处的IR吸收)。该内酯是用 WCl6 (20 mol%)–Cp2TiMe2 (24 mol%) 的 dec-9-烯基油酸酯的 RCM 在 12c 前制备的(产率为 18%)。酯4b(由十一烯醇和油酸制备,收率为96%)与1(2mol%;方案 3) 得到 20 元环内酯 5b (63%) 与不变的起始酯 方案 2 试剂和条件 1 (1.7 4 mol%) C6H6 60 8C 24 h C (CH2)8 O (CH2)n O 2a,b 2,3a n = 8 (83%) b n = 9 (82%) O C O (CH2)8 (CH2)n 3a,b 2870 J. Chem. Soc. Perkin Trans. 1 1997 (14%).该内酯以 Z-和 E 异构体的混合物分两组次洗脱,总比例为 61 39(通过 GC)。在第一个分数中,比率为71 29(GC),而在第二个分数中,该比率为42 58(GC)。平行工作最近出现在文献 20 中的方案 3 试剂和条件 1 (0.8 2 mol%) C6H6 60 8C 24 h C (CH2)7 O (CH2)n O O C O (CH2)7 (CH2)n (CH2)7CH3 4a,b 5a,b 4,5a n = 8 (65%) b n = 9 (63%) 方案 4 试剂和条件 1 (1.5 mol%) C6H6 60 8C 24 h O C O (CH2)n O (CH2)n C O 6a,b 7a,b 6,7a n = 8 (6%) b n = 9 方案 5 试剂和条件 i C6H6 回流(Dean-Stark 陷阱) Cat.conc.H2SO4 5 小时 产量 78–96% (CH2)8 CO2H HO(CH2)n (CH2)8 CO2 (CH2)n + i n = 8,9 (CH2)7CO2H (CH2)7CH3 + HO(CH2)n i n = 8,9 (CH2)7CO2 (CH2)7CH3 (CH2)n 2a,b 4a,b COOH + HO(CH2)n i n = 8,9 COO (CH2)n 6a,b 其中 21 元内酯 3b 是使用 催化剂 1 (4 mol%) 合成的 (71% 产率;我们制备的 82%) 和酯2B在二氯甲烷溶液中。实验红外光谱在 Perkin-Elmer 1310 分光光度计上以胶片形式运行。残留物采用柱层析法分离[硅胶No 60

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号