首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >1,4-Addition of dialkylaluminium chlorides to α,β-unsaturated carboxylic acid derivatives: a new synthesis of β-branched carboxylic acids
【24h】

1,4-Addition of dialkylaluminium chlorides to α,β-unsaturated carboxylic acid derivatives: a new synthesis of β-branched carboxylic acids

机译:1,4-二烷基氯化铝在α,β-不饱和羧酸衍生物中的加成:β支链羧酸的新合成

获取原文
获取外文期刊封面目录资料

摘要

1168 J. CHEM. SOC. PERKIN TRANS. I 1989 1,4-Addition of Dialkylaluminium Chlorides to a,p-Unsaturated Carboxylic Acid Derivatives: a New Synthesis of p-Branched Carboxylic Acids Horst Kunz" and Klaus Jurgen Pees lnstitut fur Organische Chemie, Universitat Mainz, Joh.-Joachim- Becher- Weg 18-20, 0-6500 Maim Federal Republic of Germany A new synthesis of P-branched carboxylic acid derivatives by the 1,4-addition of dialkylaluminium chlorides to m,a-unsaturated N-acyl amides, the oxazolidones (1) and the oxazinone (4), is described. The introduction of branching into carbon-carbon chains is a basic problem in organic synthesis. Branching at the P-position to a carbonyl function is usually introduced by Michael addition1 (or one of its modern variants2) of carbon nucleophiles, activated by carbonyl or other acidifying groups, to enone systems; the 1,4-addition of alkyl groups is achieved regioselectively using alkyl cuprates generated from alkyl- lithium derivative^.^ We here report a new route to P-branched carboxylic acids by the 1,4-addition of dialkylaluminium chlorides to a,P-unsaturated carboxylic acid derivatives. The 1,4-addition of organoaluminium compounds has been described for the transfer of the cyano group to unsaturated ketones and esters,' of alkyny16 and alkenyl groups6*7 to enones, and also of the methyl group in the nickel-catalysed reaction of trimethylaluminium with enones.* However, analogous re-actions of higher aluminium alkyls with unsaturated carboxylic acid derivatives are hitherto unreported.In this paper we describe the use of a$-unsaturated N-acyl urethanes, in particular x,P-unsaturated N-acyl oxazolidones t (I), as the electrophilic acceptors. They are easily obtained from 2-oxazolidone by deprotonation with butyl-lithium and subsequent reaction with +unsaturated acyl chlorides. Addition of dialkylaluminium chlorides (2) (2 equiv. 1 M solu-tion in hexane or heptane) to the amides (1) in dichloromethane at -40 "C and allowing to warm to 0 "C, gave the almost pure branched N-acyloxazolidones (3) (Scheme 1, Table). Scheme 1. Reagents: i, R,'AlCl (2a), CH,Cl,, -40 "C; ii, R,AlCl (2b), CHZCI,, -40 __* 0 "C The reaction is strongly dependent upon both the quantity and type of alkylaluminium reagent used.Addition of 1 equiv. of diethylaluminium chloride to the cinnamoyloxazolidone (lc) led to rapid complex formation (orange colour), but t.1.c. analysis of the hydrolysed reaction mixture after 2 h showed that no reaction had occurred. On addition of a further 1 equiv. of diethylaluminium chloride ie. (2a) = (2b), R = R' = Et, however, reaction did occur to give 1-(3-phenylpentanoyl)-2-oxazolidone (3e) within 18 h. In contrast, under identical -f rr,b-Unsaturated N-acyl derivatives of chiral2-oxazolidones have been successfully used in Diels--Alder reactions with catalysis by diethylaluminium chloride.' conditions, neither two equivalents of dimethylaluminium chloride nor of di-isobutylaluminium chloride reacted with the electrophiles (1).However, treatment with an equimolar mix- ture of dimethyl- and di-isobutyl-aluminium chloride (2a), R' = Me; (2b), R = Bu' resulted in the transfer of the isobutyl group to the acceptor (Ic) to give 1-(5-methyI-3-phenyl- hexanoyl)-2-oxazolidone (3f). This series of reactions is summarized in the Table. It was found that aliphatic, branched chain, aromatic, and alicyclic a,P-unsaturated acyl oxazolidones (lad) underwent 1,4-addition on treatment with dialkylaluminium chlorides. Although methylaluminium chloride alone formed complexes with compounds (l), it failed to bring about transfer of a methyl group to the acceptor; however, it was found to catalyse the nucleophilic transfer of higher alkyl groups. Side reactions, such as 1,2-additions, were not observed.The moderate yields obtained in some cases were due partly to incomplete con- version (Table entries 1,4,5,9, and 10) and partly to hydrolysis of the products (3) during work up and chromatography (entries 1,2, 5, and 6). The reactivity of the electrophiles (1) was influenced by steric and electronic factors as expected-in particular, the cyclohexenecarboxylic acid derivative (le) reacted slowly even at room temperature. It should also be noted that N,N-diethylcinnamamide does not react with dialkylaluminium chlorides under identical conditions. The 1 ,Caddition of alkylcuprates to E,P-unsaturated esters of chiral camphor derivatives has been achieved in high diastereo- selectivity." Preliminary experiments show that the addition of dialkylaluminium chlorides can also be performed diastereo- selectively by the use of carbohydrate auxiliaries." Thus reaction of the N-cinnamoyl xylofuranose-oxazinone derivative (4) with diethylaluminium chloride gave the P-branched product (5) in high yield, due to its relative stability to hydrolysis, and with a diastereoisomeric ratio of 87: 13 (by 400 MHz 'H n.m.r.) (Scheme 2).Hydrolysis of (5) with hydrochloric ot Scheme 2. Reagents: i, 2 x Et,AlCI, CH,Cl,, -80 OC; yield > 90, (3S):(3R)= 87:13 J. CHEM. SOC. PERKIN TRANS. I 1989 Table. Synthesis of P-branched N-acyl-2-oxazolidones (3) from z,P-unsaturated N-acyloxazolidones (1) and dialkylaluminium chlorides (2) at -40°C-0°C Substrate (1) Reagents (2a) and (2b) r -7- Reaction Entry R' R2 R' R time (h) M.p.("C) 1 H Me Et Et 4 5-8 2 H Me Me CH,CHMe, 1.5 oil 3 H CH,CHMe, Me Et 18 oil 4 H CH,CHMe, Me CH,CHMe, 27 oil 5 6 7 8 H H €3 H C6H5 C6H5 C6H5 o-MeOC,H, Et Me Me Et Et Et CH,CHMe, Et 18 18 17 2.5 66 65-66 77 65-67 9 H o-MeOC,H, Me CH,CHMe, 27 oil 10 4CHJ4- Me Et 4gd oil 'All products had correct elemental analyses. 'After flash chromatography with ethyl acetate-light petroleum as eluant. 'Incomplete conversion by t.1.c. Reaction was allowed to warm to room temperature. acid gave free 3-phenylpentanoic acid which showed a positive 5 For a review, see W. Nagata, and M. Yoshioka, Org. React. (N.Y.), optical rotation, and consequently consisted predominantly of 1977,25,255.the (3s)-diastereoisomer. 6 J. Hooz and R. B. Layton, Can. J. Chem., 1973,51,2098. The 1,4-addition of alkyl groups from dialkylaluminium 7 G. Zweifel and J. A. Miller, Org. React. (N.Y.),1984,32, 375. chlorides to a,P-unsaturated N-acylamides, such as (1) or (4), 8 L. Bagnell, E. Jeffery, A. Meisters, and T. Mole, Aust. J. Chem., 1975, 28,801.offers a new access to P-branched carboxylic acids, including 9 D. A. Evans, K. T. Chapman, and J. Bisaha, J. Am. Chem. SOC., 1984,sterically demanding structures such as compounds (3b-d)and 106,4261.(3f-h). Furthermore, the reaction conditions are completely 10 (a) G. Helmchen and G. Wegner, Tetrahedron Lett., 1985,26,6051;different and complementary to those of alkylcuprate additions, (b) W.Oppolzer, P. Dudfield, T. Stevenson, and T. Godel, Helu. which require use of alkyl-lithium reagents and exclusion of Chim. Actu, 1985,68,212. oxygen. 11 (a)H. Kunz, J. Mohr, W. Pfrengle, and W. Sager, 'Proc. 2nd Akabori- Conference, Kashikojima 1987,' ed. S. Sakakibara, Protein Res. Foundation, Osaka, 1988, p. 1. (b) H. Kunz and W. Pfrengle, J. Am. Chem. Soc., 1988,110,651.References 1 A. Michael, J.Prakt. Chem., 1887,35,349. 12 P. A. Levene and R. E. Marker, J. Biol. Chem., 1933, 100, 694; 2 K. Narasaka, K. Soai, Y. Aikawa, and T. Mukaiyama, Bull. Chem. 'Beilsteins Handbuch der Organischen Chemie', 4 edn, vol. IX, 3 Soc. Jpn., 1976,49, 776. Suppl. Series, p. 2512. 3 For reviews, see G. H. Posner, Org. React. (N.Y.),1972, 19, 1; B. W. Lipshutz, Synthesis, 1987, 325. 4 For a review see K. Maruoka and H. Yamamoto, Angew. Chem., Int. Received 26th October 1988 Ed. Engl., 1985, 26, 668. (Accepted 14th February 1989); Paper 9/00687G
机译:1168 J. CHEM. SOC. PERKIN 译.I 1989 1,4-二烷基氯化铝与a,p-不饱和羧酸衍生物的加成:对支链羧酸的新合成 Horst Kunz“ and Klaus Jurgen Pees lnstitut fur Organische Chemie, Universitat Mainz, Joh.-Joachim- Becher- Weg 18-20, 0-6500 Maim 德意志联邦共和国 通过二烷基氯化铝的1,4-加成新合成的P-支链羧酸衍生物,描述了 a-不饱和 N-酰基酰胺,恶唑烷酮 (1) 和噁嗪酮 (4)。引入支链到碳-碳链是有机合成中的一个基本问题。在P位支化为羰基官能团通常由羰基或其他酸化基团活化的碳亲核试剂的Michael加成1(或其现代变体2之一)引入烯酮系统;烷基的1,4-加成是使用烷基-锂衍生物生成的烷基铜酸盐以区域选择性方式实现的^.^ 我们在这里报道了通过将二烷基氯化铝1,4-加成到a,P-不饱和羧酸衍生物中来获得P-支链羧酸的新途径。有机铝化合物的1,4-加成已被描述用于将氰基转移到炔基16和烯基6*7的“不饱和酮和酯”,以及甲基在三甲基铝与烯酮的镍催化反应中。* 然而,高级铝烷基与不饱和羧酸衍生物的类似反应迄今尚未报道。在本文中,我们描述了使用a$-不饱和N-酰基氨基甲酸乙酯,特别是x,P-不饱和N-酰基噁唑烷酮t(I)作为亲电受体。它们很容易从2-恶唑烷酮中获得,方法是用丁基锂去质子化,随后与+不饱和酰氯反应。在-40“C下,将二烷基氯化铝(2)(2相当于1M在己烷或庚烷中的溶解性)加入到酰胺(1)的二氯甲烷中,并使其升温至0”C,得到几乎纯的支链N-酰基噁唑烷酮(3)(方案1,表)。方案 1.试剂:i,R,'AlCl(2a),CH,Cl,, -40“C;ii, R,AlCl (2b), CHZCI,, -40 __* 0 “C 该反应强烈依赖于所用烷基铝试剂的数量和类型。在肉桂酰氯唑烷酮 (LC) 中加入 1 当量的二乙基氯化铝可快速形成络合物(橙色),但 t.1.c.2 h后对水解反应混合物的分析表明,没有发生反应。在另外添加1当量的二乙基氯化铝[即。(2a) = (2b), R = R' = Et],然而,在 18 小时内确实发生了反应,得到 1-(3-苯基戊酰基)-2-恶唑烷酮 (3e)。相反,在相同的-f rr下,手性2-恶唑烷酮的b-不饱和N-酰基衍生物已成功用于Diels--Alder反应,并由二乙基氯化铝催化。'条件下,二甲基氯化铝和二异丁基氯化铝均未与亲电试剂反应 (1)。然而,用二甲基和二异丁基氯化铝的等摩尔混合物处理[(2a),R'=Me;(2b),R=Bu']导致异丁基转移到受体(Ic)上,得到1-(5-甲基I-3-苯基己酰基)-2-恶唑烷酮(3f)。这一系列反应总结在表中。结果表明,脂肪族、支链、芳香族和脂环α,P-不饱和酰基噁唑烷酮(lad)在二烷基氯化铝处理后进行了1,4-加成。虽然甲基氯化铝单独与化合物(l)形成络合物,但它未能使甲基转移到受体上;然而,发现它催化了高级烷基的亲核转移。没有观察到副反应,如1,2-加成。在某些情况下,获得的适度产率部分是由于转化不完全(表条目1、4、5、9和10),部分是由于产物(3)在处理和色谱过程中的水解(条目1、2、5和6)。亲电试剂(1)的反应性受到空间和电子因素的影响,特别是环己烯羧酸衍生物(le)即使在室温下反应缓慢。还应该注意的是,N,N-二乙基肉桂酰胺在相同条件下不会与二烷基氯化铝发生反应。烷基铜酸盐与手性樟脑衍生物的E,P-不饱和酯的1,加成具有很高的非对映选择性。初步实验表明,二烷基氯化铝的添加也可以通过使用碳水化合物助剂选择性地进行非对映性。因此,N-肉桂酰木呋喃糖-噁嗪酮衍生物(4)与二乙基氯化铝反应,由于其对水解的相对稳定性,非对映异构体比为87:13(按400 MHz'H n.m.r.),得到P支链产物(5)的高产率。(方案 2)。(5)用盐酸水解ot 方案2。试剂:i,2 x Et,AlCI,CH,Cl,, -80 OC;收率 > 90%, (3S):(3R)= 87:13 J. CHEM. SOC. PERKIN TRANS.I 1989 表。在 -40°C-0°C 下由 z,P-不饱和 N-酰基噁唑烷酮 (1) 和二烷基氯化铝 (2) 合成 P-支链 N-酰基-2-恶唑烷酮 (3) 底物 (1) 试剂 (2a) 和 (2b) r -7- 反应条目 R' R2 R' R 时间 (h) M.p.(“C) 1 H Me Et 4 5-8 2 H Me Me CH,CHMe, 1.5 油 3 H CH,CHMe, Me Et 18 油 4 H CH,CHMe, Me CH,CHMe, 27 oil 5 6 7 8 H H €3 H C6H5 C6H5 C6H5 o-MeOC,H, et me me et CH,CHMe, et 18 18 17 2.5 66 65-66 77 65-67 9 H o-MeOC,H, me CH,CHMe, 27 oil 10 4CHJ4- Me et 4gd oil '所有产品都进行了正确的元素分析。'以乙酸乙酯-轻质石油为洗脱液的快速色谱后。't.1.c的不完整转换。将反应加热至室温。酸给出游离的 3-苯基戊酸,显示阳性 5 有关评论,请参阅 W. Nagata 和 M. Yoshioka, Org. React。(N.Y.),旋光度,因此主要由1977,25,255.(3s)-非对映异构体组成。6 J. Hooz 和 R. B. Layton, Can. J. Chem., 1973,51,2098.来自二烷基铝的烷基的 1,4-加成 7 G. Zweifel 和 J. A. Miller, Org. React.(纽约),1984,32, 375.氯化物到a,P-不饱和N-酰基酰胺,如(1)或(4),8 L. Bagnell,E.Jeffery,A.Meisters和T.Mole,Aust.J.Chem.,1975,28,801.提供了对P支链羧酸的新途径,包括9 D. A. Evans, K. T. Chapman, and J. Bisaha, J. Am. Chem. SOC., 1984,空间要求结构,如化合物(3b-d)和106,4261。此外,反应条件完全为 10 (a) G. Helmchen 和 G. Wegner, Tetrahedron Lett., 1985,26,6051;与烷基铜酸盐加成剂不同和互补,(b) W.Oppolzer, P. Dudfield, T. Stevenson, and T. Godel, Helu.这需要使用烷基锂试剂并排除 Chim。Actu, 1985,68,212.氧。11 (a)H. Kunz, J. Mohr, W. Pfrengle, and W. Sager, 'Proc. 2nd Akabori- Conference, Kashikojima 1987', ed. S. Sakakibara, Protein Res. Foundation, Osaka, 1988, p. 1.(b) H. Kunz and W. Pfrengle, J. Am. Chem. Soc., 1988,110,651.参考文献 1 A. Michael, J.Prakt.化学, 1887,35,349.12 P. A. Levene 和 R. E. Marker, J. Biol. Chem., 1933, 100, 694;2 K. Narasaka、K. Soai、Y. Aikawa 和 T.向山,公牛。Chem. 'Beilsteins Handbuch der Organischen Chemie', 4 edn, vol. IX, 3 Soc. Jpn., 1976,49, 776.增刊,第2512页。3 有关评论,请参阅 G. H. Posner, Org. React。(纽约),1972, 19, 1;B. W. Lipshutz,综合,1987 年,325 页。4 有关评论,见K. Maruoka and H. Yamamoto, Angew。Chem., Int. 1988 年 10 月 26 日收稿 Ed. Engl., 1985, 26, 668.(1989年2月14日接受);纸 9/00687G

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号