首页> 外文期刊>Human gene therapy >Optimization of Human NK Cell Manufacturing: Fully Automated Separation, Improved Ex Vivo Expansion Using IL-21 with Autologous Feeder Cells, and Generation of Anti-CD123-CAR-Expressing Effector Cells
【24h】

Optimization of Human NK Cell Manufacturing: Fully Automated Separation, Improved Ex Vivo Expansion Using IL-21 with Autologous Feeder Cells, and Generation of Anti-CD123-CAR-Expressing Effector Cells

机译:优化人NK细胞生产:全自动分离,使用IL-21与自体饲养细胞改善体外扩增,以及产生抗CD123-CAR表达效应细胞

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

ex vivo expanded natural killer (NK) cells as potential antitumor effector cells appears to be suitable for effector cell-based immunotherapies in high-risk cancer patients. However, good manufacturing practice (GMP)-compliant manufacturing of clinical-grade NK cells at sufficiently high numbers represents a great challenge. Therefore, previous expansion protocols for those effector cells were improved and optimized by using newly developed culture medium, interleukin (IL)-21, and autologous feeder cells (FCs). Separation of primary human NK cells (CD56 + CD3 ? ) was carried out with the CliniMACS Prodigy ? in a single process, starting with approximately 1.2?×?10 9 leukocytes collected by small-scale lymphapheresis or from buffy coats. Enriched NK cells were adjusted to starting cell concentrations within approximately 1?×?10 6 effector cells/mL and cultured in comparative expansion experiments for 14 days with IL-2 (1,000 IU/mL) in different GMP-compliant media (X-VIVO ? 10, CellGro ? , TexMACS ? , and NK MACS ? ). After medium optimization, beneficial effects for functionality and phenotype were investigated at the beginning of cell expansion with irradiated (25?Gy) autologous FCs at a ratio of 20:1 (feeder: NK) in the presence or absence of IL-21 (100?ng/mL). Additionally, expanded NK cells were gene modified to express chimeric antigen receptors (CARs) against CD123, a common marker for acute myeloid leukemia (AML). Cytotoxicity, degranulation, and cytokine release of transduced NK cells were determined against KG1a cells in flow cytometric analysis and fluorescent imaging. The Prodigy manufacturing process revealed high target cell viabilities (median 95.4), adequate NK cell recovery (median 60.4), and purity of 95.4 in regard to CD56 + CD3 - target cells. The process in its early phase of development led to a median T-cell depletion of log 3.5 after CD3 depletion and log 3.6 after the whole process, including CD3 depletion and CD56 enrichment steps. Manually performed experiments to test different culture media demonstrated significantly higher NK cell expansion rates and an approximately equal distribution of CD56 dim CD16 pos and CD56 bright CD16 dimneg NK subsets on day 14 with cells cultivated in NK MACS ? media. Moreover, effector cell expansion in manually performed experiments with NK MACS ? containing IL-2 and irradiated autologous FCs and IL-21, both added at the initiation of the culture, induced an 85-fold NK cell expansion. Compared to freshly isolated NK cells, expanded NK cells expressed significantly higher levels of NKp30, NKp44, NKG2D, TRAIL, FasL, CD69, and CD137, and showed comparable cell viabilities and killing/degranulation activities against tumor and leukemic cell lines in vitro . NK cells used for CAR transduction showed the highest anti-CD123 CAR expression on day 3 after gene modification. These anti-CD123 CAR-engineered NK cells demonstrated improved cytotoxicity against the CD123 pos AML cell line KG1a and primary AML blasts. In addition, CAR NK cells showed higher degranulation and enhanced secretion of tumor necrosis factor alpha, interferon gamma, and granzyme A and B. In fluorescence imaging, specific interactions that initiated apoptotic processes in the AML target cells were detected between CAR NK cells and KG1a. After the fully automated NK cell separation process on Prodigy, a new NK cell expansion protocol was generated that resulted in high numbers of NK cells with potent antitumor activity, which could be modified efficiently by novel third-generation, alpha-retroviral SIN vector constructs. Next steps are the integration of the manual expansion procedure in the fully integrated platform for a standardized GMP-compliant overall process in this closed system that also may include gene modification of NK cells to optimize target-specific antitumor activity.>
机译:体外扩增的自然杀伤 (NK) 细胞作为潜在的抗肿瘤效应细胞似乎适用于高危癌症患者的基于效应细胞的免疫疗法。然而,符合良好生产规范 (GMP) 的临床级 NK 细胞的足够高数量的生产是一个巨大的挑战。因此,通过使用新开发的培养基、白细胞介素 (IL)-21 和自体饲养细胞 (FC),改进和优化了这些效应细胞的先前扩增方案。原代人NK细胞(CD56 + CD3 ?)的分离是用CliniMACS Prodigy ?在一个过程中,从大约 1.2?×?10 个通过小规模淋巴单采术或从血沉棕黄层收集的 9 个白细胞开始。将富集的NK细胞调整至约1?×?10 6个效应细胞/mL的起始细胞浓度,并在比较扩增实验中用IL-2(1,000IU/mL)在不同的符合GMP的培养基(X-VIVO ?10、CellGro?、TexMACS?和NK MACS?)中培养14天。培养基优化后,在辐照(25?Gy) 自 体 FC 以 20:1 的比例(饲养员:NK)在存在或不存在 IL-21 (100?ng/mL) 的情况下。此外,扩增的NK细胞被基因修饰以表达针对CD123的嵌合抗原受体(CAR),CD123是急性髓系白血病(AML)的常见标志物。在流式细胞术分析和荧光成像中测定转导NK细胞对KG1a细胞的细胞毒性、脱颗粒和细胞因子释放。Prodigy的生产工艺显示出高靶细胞活力(中位数95.4%),足够的NK细胞回收率(中位数60.4%),CD56 + CD3-靶细胞纯度为95.4%。该过程在其开发的早期阶段导致 CD3 耗竭后的中位 T 细胞耗竭 3.5 和整个过程后的 log 3.6,包括 CD3 耗竭和 CD56 富集步骤。手动进行的实验以测试不同的培养基,结果显示,在NK MACS中培养的细胞在第14天,NK细胞扩增率显着提高,CD56 dim CD16 pos和CD56明亮CD16 dim&neg NK亚群的分布大致相等。媒体。此外,使用NK MACS进行手动实验的效应细胞扩增?含有 IL-2 和辐照的自体 FC 和 IL-21,两者均在培养开始时添加,诱导 NK 细胞扩增 85 倍。与新鲜分离的NK细胞相比,扩增的NK细胞表达的NKp30、NKp44、NKG2D、TRAIL、FasL、CD69和CD137水平显著更高,并且在体外显示出与肿瘤和白血病细胞系相当的细胞活力和杀伤/脱颗粒活性。用于CAR转导的NK细胞在基因修饰后第3天显示出最高的抗CD123 CAR表达。这些抗 CD123 CAR 工程化的 NK 细胞对 CD123 pos AML 细胞系 KG1a 和原代 AML 原始细胞表现出更好的细胞毒性。此外,CAR NK细胞表现出更高的脱颗粒和肿瘤坏死因子α、干扰素γ以及颗粒酶A和B的分泌增强。在荧光成像中,在 CAR NK 细胞和 KG1a 之间检测到在 AML 靶细胞中启动凋亡过程的特异性相互作用。在Prodigy上进行全自动NK细胞分离过程后,产生了一种新的NK细胞扩增方案,该方案产生了大量具有强效抗肿瘤活性的NK细胞,这些NK细胞可以通过新的第三代α-逆转录病毒SIN载体构建体进行有效修饰。下一步是将手动扩增程序集成到完全集成的平台中,以在这个封闭系统中实现符合GMP标准的标准化整体过程,其中还可能包括NK细胞的基因修饰,以优化靶标特异性抗肿瘤活性。>

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号