...
首页> 外文期刊>Endocrine-related cancer >Targeting of multiple signalling pathways by heat shock protein 90 molecular chaperone inhibitors.
【24h】

Targeting of multiple signalling pathways by heat shock protein 90 molecular chaperone inhibitors.

机译:Targeting of multiple signalling pathways by heat shock protein 90 molecular chaperone inhibitors.

获取原文
获取原文并翻译 | 示例
           

摘要

The last decade has seen the molecular chaperone heat shock protein 90 (HSP90) emerge as an exciting target for cancer therapy. This is because HSP90 is involved in maintaining the conformation, stability, activity and cellular localisation of several key oncogenic client proteins. These include, amongst others, ERBB2, C-RAF, CDK4, AKT/PKB, steroid hormone receptors, mutant p53, HIF-1alpha , survivin and telomerase hTERT. Therefore, modulation of this single drug target offers the prospect of simultaneously inhibiting all the multiple signalling pathways and biological processes that have been implicated in the development of the malignant phenotype. The chaperone function of HSP90 requires the formation of a multichaperone complex, which is dependent on the hydrolysis of ATP and ADP/ATP exchange. Most current inhibitors of HSP90 act as nucleotide mimetics, which block the intrinsic ATPase activity of this molecular chaperone. The first-in-class inhibitor to enter and complete phase I clinical trials was the geldanamycin analogue, 17-allylamino-17-demethoxygeldanamycin. The results of these trials have demonstrated that HSP90 is a valid drug target. Evidence of clinical activity has been seen in patients with melanoma, breast and prostate cancer. This article provides a personal perspective of the present efforts to increase our understanding of the molecular and cellular consequences of HSP90 inhibition, with examples from work in our own laboratory. We also review the discovery and development of novel small-molecule inhibitors and discuss alternative approaches to inhibit HSP90 activity, both of which offer exciting prospects for the future.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号