...
首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Facile one-pot transformation of carboxylic acid chlorides into 2-substituted allyl alcohols or epichlorohydrins
【24h】

Facile one-pot transformation of carboxylic acid chlorides into 2-substituted allyl alcohols or epichlorohydrins

机译:Facile one-pot transformation of carboxylic acid chlorides into 2-substituted allyl alcohols or epichlorohydrins

获取原文

摘要

J. CHEM. SOC. PERKIN TRANS. I 1989 Facile One-pot Transformation of Carboxylic Acid Chlorides into 2-Substituted Allyl Alcohols or Epichlorohydrins t Jose Barluenga," Jose L. Fernandez-Simon, Jose M. Concellon, and Miguel Yus Departamento de Quimica Organometalica, Facultad de Quimica, Universidad de Oviedo, 33077 Oviedo, Spain Treatment of carboxylic acid chlorides (1) with chloromethyl-lithium generated in situ (1 :2 molar ratio) in the presence of lithium iodide leads, after hydrolysis, to the corresponding homologated 2-substituted allyl alcohols (2). When the same reaction is carried out using iodide-free butyl-lithium, instead of met hy I-Iithium-l it h iu m iodide, the corresponding 2 -substituted epic h loro hydri ns (5)are formed. The allylation of carbonyl compounds to homoallylic alcohols using organometallic derivatives is an important synthetic operation.' However, the preparation of substituted systems presents the usual problems associated with regioselectivity in the allylic moiety and, consequently, they are relatively inaccessible.' On the other hand, the described chemistry of epichlorohydrins is practically concentrated on the simplest, chloromethyloxirane, due to its commercial usefulness in the preparation of polymers and highly cross-linked material^;^ the corresponding substituted derivatives are much less well known. Recently, we and others have developed method- ologies which permit the use of chloromethyl-lithium,6 generated in silu,' in the preparation of epoxides or chl~rohydrins,~-' terminal and exocyclic olefins? p-functionalized organolithium compounds and functionalized alcohols,4b and cyclopropanols?' starting from carbonyl compounds.In the present paper, we report the one-pot transformation of carboxylic acid chlorides into 2-substituted allyl alcohols 1 or epichlorohydrins, using the same carbenoidic precursor. Results and Discussion The successive treatment of several carboxylic acid chlorides (1) with a mixture of chloroiodomethane-lithium bromide9 (1 :2 molar ratio) and then with methyl-lithium-lithium iodide (1:2 molar ratio; prepared from methyl iodide and lithium) at -78 "C leads, after warming, evaporation under reduced pressure (essential), and hydrolysis, to the corresponding 2-substituted allyl alcohols (2) (Scheme 1, Table 1).A stoicheiometric amount of iodine is obtained in this reaction, the suggested mechanism of which involves the F?' 'CI i-iv ____) II A R' ,OH R a; CH,=C(Me) b; MeCH=CH C; c-C~H, d; c-C~H, e; Bu f; Bu' g; Bu' h; Ph i; c-C~H,, Scheme 1. Reagents and conditions: i, 2 ClCH,I-LiBr; ii, 2 MeLi-LiI, -78 "C; iii, -78-25 OC, then evaporation; iv, NH,Cl-water Table 1. Substituted allylic alcohols (2) from carboxylic acid chlorides (1) Allylic alcohol (2) Carboxylic acid chloride (1) f---No. Yield" 1 B.p./"C (mmHg) 57 50-54 (15) 60 53-57 70 49-53 (15) 70 64-68 (15) 75 68-72 (15)' 70 65-69 (15) 45 61-65 (15)d 85 57-61 (O.Ol)e 88 6amp;63 (0.01) 'Isolated yields based on the starting carboxylic acid chloride (1).The starting material (lb) and the obtained product (2b) are both ca. 95:5 E:Z isomeric mixtures (g.1.c. and n.m.r.). Lit.,* b.p. 170-171 "C (760 mmHg). Lit.,8 b.p. 161-162 "C (760 mmHg). Lit.,' b.p. 116117 "C (11 mmHg). intermediates (3)-(6) (Scheme 2). The formation of these intermediates is based on the following sequence: (i) after the first double addition of chloromethyl-lithium to the carboxylic 'CI bsol;Cl X (31CI (51 (61(4)I Scheme 2. acid chlorides (1) (2:l molar ratio), hydrolysis leads to the corresponding dichlorohydrin (3);4c (ii) the transformation (3)+(5) has been proved by treatment with iodide-free butyl- lithium instead of methyl-lithium containing iodide: in this case the corresponding epichlorohydrin (5) was obtained (see below); the probable participation of intermediate (4) is possibly due to lithium iodide being in the reaction medium (arising from t Preliminary communication, J. Barluenga, J.M. Concellon, J. L. Fernandez-Simon, and M. Yus, J. Chem. SOC.,Chem. Commun., 1988, 536. Allyl alcohols are important starting materials for asymmetric epoxidation (see for instance: Y. Gao, R. M. Hanson, J. M. Klunder, S. Y. KO,H. Masamune, and K. B. Sharpless, J. Am. Chem. SOC.,1987, 109, 5765).9 In the absence of this salt, the reaction yields a mixture of products. Table 2. Epichlorohydrins (5) from carboxylic acid chlorides (1) Epichlorohydrin (5) Carboxylic acid chloride (1) f No.h Yield" B.p./'C bsol; (mmHg) 75 51-55 (15) 68 53-57 (15) 70 47-51 (15) 55 65-69 (15) 70 70-74 (15) 75 67-71 (15) 80 6CL-64 (15) 90 56-60 (O.Ol)c 70 61-62 (0.01) 60 85-88 (15) a Isolated yield based on the starting carboxylic acid chloride (1). The starting material (lb) and the obtained product (5b) are both ca. 95: 5 E:Z isomeric mixtures (g.1.c. and n.m.r.). Lit.,13 109-109.5 "C (6 mmHg). methyl-lithium, prepared by treatment of methyl iodide with lithium) and the well known chlorine-iodine interchange reaction;" (iii) treatment of compound (5;R = H) with lithium iodide leads to a mixture of product (6; R = H) and 1,3-di- iodopropan-2-01 (4: 1) (by 'H and 13C n.m.r.); on the other hand, the presence of iodide rather than bromide results essentially in the transformation (5)-+(2), since the treatment of the same starting material (5; R = H) with lithium bromide under the same reaction conditions does not yield the expected ally1 alcohol (2); (iv) the iodide-induced p-elimination from 1,2- chloroiodo compounds which has already been described.' * Taking these considerations into account, intermediate (3) is initially formed and then, either in this form or uia the corresponding iodinated derivative (4), yields the epichloro- hydrin (5);the chlorine-iodine exchange on compound (5)gives the iodo epoxide (6), which by treatment with iodide effects the epoxide" ring opening to yield, after hydrolysis, the allylic alcohol (2) (Scheme 2).Epichlorohydrins were also prepared via the process (1)+(5) using iodide-free butyl-lithium in the same way as was described in Scheme 1. Thus, by successive treatment of carboxylic acid chlorides (1) with chloroiodomethane-lithium bromide (1 :2 molar ratio) and then with iodide-free butyl-lithium (1 :2 molar ratio; prepared from butyl chloride and lithium) at temperatures ranging between -78 and 2OoC, the expected substituted epichlorohydrins (5)were directly obtained (Scheme 3, Table 2). (1 1 R a; CH,=C(Me) b; MeCH=CH C; c-C~H, d; c-C,H, e; Bu f; Bu' g; But h; Ph i; c-C,H,, j; CKCH,), Scheme 3. Reugenrs urzd condifions: i, 2 ClCH,I LiBr; ii, 2 BuLi, -78-20 OC; iii, NH,Cl-water J. CHEM.SOC. PERKIN TRANS. I 1989 In conclusion, this paper describes a convenient, rapid, and versatile procedure for the synthesis of 2-substituted allylic alcohols and epichlorohydrins starting from readily available carboxylic acid chlorides. Experimental The experimental techniques and spectroscopic instrumentation used in the course of this work were as described in ref. 14.t 2-Substituted Ally1 Alcohols (2). General Procedure.-A diethyl ether solution of methyl-lithium (l~, 11 mmol; prepared from methyl iodide and lithium)15 was added to a stirred solution of chloroiodomethane (11 mmol), the starting carboxylic acid chloride (1) (5 mmol), and lithium bromide (11 mmol) in tetrahydrofuran (THF) (20 ml) over 15 min at -78 "C under argon.Stirring was continued for 1 h at the same temperature and then the solution was allowed to warm to room temperature. The reaction mixture was evaporated (0.1 mmHg) at 50 OC (bath temperature). The resulting residue was dissolved in hexane (10 ml) and hydrolysed with saturated aqueous NH,Cl, extracted with diethyl ether, washed with saturated aqueous Na,S,O,, the ethereal layer dried (Na,SO,), and evaporated (15 mmHg). The resulting residue was distilled in U~CUOto afford the allylic alcohol (2). 3-Methyl-2-methylenebut-3-en-l-ol(2a) (Found: C, 73.0; H, 10.3. C,H,,O requires C, 73.43; H, 10.27); vmax,(film) 3 330 (OH), 3 080, and 1 600 cm-' (CH=C); G,(CDCl,) 2.0 (4 H, s, Me, OH), 4.4 (2 H, s, CH,O), and 5.0-5.5 (4 H, m, 2 x CH,=C); 6,(CC1,) 21.8 (Me), 63.3 (CO), 112.5, 113.0 (2 x CH,=C), 142.0, and 147.5 p.p.m.(2 x C=CH,); m/z98 (M+,loo), 97 (22), 83 (47), 80 (40), 79 (82), 77 (18), 70 (18), 69 (89), 67 (25), 65 (30), 57 (22), 56 (19), 55 (56), 53 (25), 52 (16), 51 (15), 43 (24), 42 (12), 41 (92), and 39 (53). (E)-2-Methylenepent-3-en-l-o1(2b)$ (Found: C, 73.1; H, 9.9. C,H,,O requires C, 73.43; H, 10.27); vmax~(film) 3 370 (OH), 3 080, 3 020, and 1610 cm-' (CH=C); 6,(CDC13) 1.6 (1 H, s, OH), 1.8 (3 H, d, J5 Hz, Me), 4.3 (2 H, s, CH,O), 4.9-5.2 (2 H, m, CH,=C), and 5.5-6.1 (2 H, m, CH=CH); 6,(CCl,) 18.6 (Me), 62.9 (CO), 113.5 (CH,=C), 125.3, 132.0 (CH=CH), and 145.5 p.p.m. (C=CH,); m/z98 (M+,537383 (32), 80 (50),79 (loo), 77 (15), 69 (26), 67 (32), 65 (31), 55 (45), 53 (16), 43 (24), 42 (ll), 41 (70), and 39 (38).2-Cycloprupylprop-2-en-1-01(2c) (Found: C, 73.1; H, 10.1. C,H,,O requires C, 73.43; H, 10.27); vmdX.(film) 3 400 (OH), 3 090, 3 070, and 1640 cm-' (ring CH,, CH=C); G,(CDCl,) 0.4-1.4 (5 H, m, 2 x ring CH,, CH), 1.8 (1 H, s, OH), 4.1 (2 H, s, CH,O), and 4.7-4.9 (2 H, m, CH,=C); 6,(CCl,) 6.6 (2 x ring CH,), 13.2 (CH), 65.0 (CH,O), 105.8 (CH,=C), and 151.1 p.p.m. (C=CH,); m/z 98 (M+,26), 83 (24), 80 (40), 79 (loo), 77 (16), 69 (22), 67 (27), 65 (21), 57 (43), 55 (29), 53 (14), 51 (12), 43 (lo), 41 (39), 39 (50),and 31 (1 8). 2-Cydobutylprop-2-en-l-ol(2d) (Found: C, 75.1; H, 10.8. C,H,,O requires C, 74.95; H, 10.78); vmztx,(film) 3 350 (OH), 3 090, and 1 640 cm- '(CH=C); G,(CDC13) 1.6 (1 H, s, OH), 1.7-2.4 (7 H, m, 3 x ring CH,, CH), 4.0 (2 H, s, CH,O), and 4.8-5.1 (2 H, m, CH,=C); G,(CCl,) 18.4,27.8, 38.5 (3 x ring CH,, CH), 63.9 (CO), 106.6 (CH,=C), and 153.4 p.p.m.(C=CH,); m/z 112 (Mf, 373, 84 (loo),83 (85), 81 (12), 79 (20), 69 (21), 66 (lo), 57 (15), 56 (62), 55 (98), 53 (21), 43 (12), 41 (26), and 39 (20). * The transformation of epichlorohydrins into allylic alcohols by using telluride 'or selenide 'has been described. t Whether CCl, was used as solvent for n.m.r. spectra or they were recorded as a neat sample, a D,O capillary was employed as lock reference. $ The Zisomer (ca. 5) is also present (g.1.c. and n.m.r.1 (see footnote b in Table 1). J. CHEM. SOC. PERKlN TRANS. J 1989 2-Butylprop-2-en-l-01(2e);~ 3 350 (OH), 3 060, andvmax.(film) 1 645 cm-' (CH=C); amp;,(CDCl,) 0.7-1.0 (3 H, m, Me), 1.2-1.5 (4 H, m, CH,CH,Me), 1.8 (1 H, s, OH), 1.9-2.1 (2 H, m, CH,C=C), 4.0 (2 H, s, CH,O), and 4.8-5.0 (2 H, m, CH,=C); amp;(neat) 14.4 (Me), 23.0, 30.5, 33.1 (3 x CH,C), 66.2 (CH,O), 109.8 (CH,X), and 150.1 p.p.m.(CSH,); m/z 114 (M+,9), 81 (23), 72 (15),71(47), 68 (lo), 58 (13), 57 (loo), 55 (22), 43 (N), 41 (21), and 39 (13). 2-Isobutylprop-2-en-l-ol (2f) (Found C, 73.4; H, 12.3. C7H14O requires C, 73.63; H, 12.36); vmax.(film)3 390 (OH), 3 050, and 1 640 cm-' (CHS); amp;,(CDCl,) 0.8 (6 H, d, J 5 Hz, 2 x Me), 1.2-1.8 (4 H, m, CH,CH, OH), 4.0 (2 H, s, CH,O), and 4.8-5.1 (2 H, m, CH,=C); amp;(neat) 22.0 (2 x Me), 26.1 (CH), 42.9 (CH,CH), 65.0 (CH,O), 110.3 (CH,=C), and 148.5 p.p.m.(CSH,); m/z 114 (M+,3), 96 (61), 81 (64), 79 (18), 72 (2 71 (4 70 (1 67 (13), 57 (loo), 56 (15), 55 (40), 54 (59), 53 (25),51 (1 43 (go), 42 (15), 41 (93), 40 (15), 39 (88), and 31 (25). 2-t-Butylprop-2-en- 1-01 (2g);' vmax.(film)3 360 (OH), 3 080, and 1 620 cm-' (CH=C); amp;,(CDCl,) 1.0(9 H, S, 3 x Me), 1.5 (1 H, br signal, OH), 4.1 (2 H, s, CH,O), and 4.8-5.0 (2 H, m, CH,=C); 6,(CC1,) 29.5 (3 x Me), 34.8 (CMe), 62.4 (CO), 107.0 (CH,=C), and 157.5 p.p.m. (C=CH,); m/z 99 (M' -Me, 1 lx), 84 (12), 83 (loo),82 (lo), 81 (82), 79 (71), 71 (1 l), 70 (27), 67 (14), 59 (43), 58 (43), 57 (85), 56 (14), 55 (65), 53 (29), 43 (17), 41 (52), and 39 (29). 2-Phenylprop-2-en- 1-01 (2h);9vmax.(film)3 350 (OH), 3 070, 3 050, 3 020, 1 625, 1 600, and 1 490 cm-' (CHX); 6H(CDC13) 1.6 (1 H, s, OH), 4.5 (2 H, s, CH,O), 5.3-5.5 (2 H, m, CH,=C), and 7.3-7.5 (5 H, m, ArH); amp;,(neat) 64.2 (CH,O), 112.3 (CH,=C), 127.3, 128.5, 129.6, 139.8 (Arc), and 148.2 p.p.m.(C=CH2);mjz 154 (M', 6673, 133 (30), 115 (22), 105 (58), 104 (22), 103 (loo), 102 (22), 92 (44), 91 (43), 79 (23), 78 (47), 77 (81), 76 (12), 63 (14), 51 (38), 50 (22), and 39 (11). 2-Cycfohe~qtlprop-2-en-1-01(29 (Found: C, 77.0; H, 11.5. C,H requires C, 77.09; H, 1 1SO); vmax,(film)3 350 (OH),3 080, and 1 640 cm-' (CH=C); GH(CDCl3) l.Gl.8 (11 H, m, 5 x ring CH,, CH), 1.6 (1 H, s, OH), 4.1 (2 H, s, CH,O), and 4.8-5.0 (2 H, m, CH,=C); 6,(CC14) 26.7, 27.0, 32.8 (5 x ring CH,), 41.4 (CH), 64.9 (CH,O), 107.6 (CH=C), and 155.0 p.p.m.(C=CH2);m/z 140 (M+,673,122 (25), 109 (34), 107 (25), 99 (28), 97 (14), 96 (26), 94 (19), 93 (25), 91 (12), 83 (48), 82 (26), 81 (77), 80 (22), 79 (52), 77 (20), 69 (lo), 68 (16), 67 (loo), 65 (12), 58 (27), 56 (20), 55 (73), 54 (17), 53 (22), 43 (12), 41 (47), 39 (34), and 31 (10). 2-Substituted Epichlorohydrins (5). General Procedure.-A diethyl ether solution of butyl-lithium (l~,11 mmol; prepared from butyl chloride and lithium) was added to a stirred solution of chloroiodomethane (1 1 mmol), the starting carboxylic acid choride (1) (5 mmol), and lithium bromide (11 mmol) in THF (20 ml) over 15 min at -78 "C under argon. Stirring was continued for 1 h at the same temperature and then the solution was allowed to warm to room temperature.The resulting mixture was then worked up as described above for compounds (2) yielding the corresponding products (5). 2-Chlor-omethyl-2-(prop-1-en-2-yl)oxirane (5a) (Found: C, 54.1; H, 6.9. C,H,ClO requires C, 54.35; H, 6.84); vmax,(CC14) 3 070, 3 050 (oxirane CH, CH=C), and 1640 cm-' (C=C); amp;,(CDCI,) 1.7-1.9 (3 H, m, Me), 2.75, 2.9 (2 H, 2 d, J 5 Hz, CH,Cl), 3.5-3.8 (2 H, m, CH,O), and 5.0-5.3 (2 H, m, CH,=C); 6,(CC14) 19.4 (Me), 47.5, 54.0 (CH,Cl, CH,O), 61.0 (CO), 1 14.5 (CH,=C), and 142.0 p.p.m. (C=CH,); mjz 133 (M++ 1, 2), 131 (M' -1, 5), 104 (16), 102 (46), 97 (lo), 83 (24), 68 (121, 67 (loo), 66 (26), 65 (41), 55 (53), and 53 (33). (E)-2-Chloromethy1-2-(prop-1-eny1)oxirane (5b)* (Found: C, * The Z isomer (w.576) is also present (g.1.c.and n.m.r.) (see footnote h in Table 2). 54.4; H, 7.0. C,H,C10 requires C, 54.35; H, 6.84); vmax,(film) 3 070, 3 050 (oxirane CH, CH=C), and 1640 cm-' (C=C); G,(CDCI,) 1.7 (3 H, d, J 5 Hz, Me), 2.75, 2.9 (2 H, 2 d, J 5 Hz, CH,Cl), 3.5-3.7 (2 H, m, CH,O), and 5.2-6.0 (2 H, m, CHXH); amp;(neat) 27.5 (Me), 47.2, 55.0, (CH,Cl, CH,O), 57.6 (CO), 127.5, and 129.8 p.p.m. (CH=CH); m/z 134 (M' + 2, lx),132 (M', 2), 119 (14), 117 (43), 83 (18), 81 (ll), 68 (17), 67 (loo), 66 (16), 65 (33), 55 (20), 53 (21), 51 (1 l), 43 (12), 41 (33), and 39 (32). 2-Chloromethyl-2-cyclopropyloxirane(5c)(Found: C, 54.4; H, 6.6. C6H,C10 requires C, 54.35; H, 6.84); vmax.(film)3 060 and 3 040 cm-' (ring CH); G,(CDCl,) 0.14.7 (4 H, m, ring CH,CH,), 1.2-1.7 (1 H, m, CH), 2.6, 2.75 (2 H, 2 d, J 5 Hz, CH,Cl), and 3.5,3.75 (2 H, 2 d, J 12 Hz, CH,O); amp;,(neat) 1.5,3.2 (ring CH,CH,), 12.3 (CH), 49.5, 52.7 (CH,Cl, CH,O), and 59.5 p.p.m.(CO);m/z 133 (M+ + 1,473, 131 (M+ -1, 14), 97 (15), 83 (51), 68 (ll), 67 (loo), 66 (17), 65 (33), 55 (67), 53 (22), 51 (14), 49 (ll), 41 (32), 40 (12), and 39 (46). 2-C/doromethyl-2-cyclobutyloxirane (5d)(Found: C, 57.1; H, 7.5. C,H,,ClO requires C, 57.34; H, 7.56); vmax.(CC14)3 060 cm-' (oxirane CH); amp;,(CDCl,) 1.8-2.2 (7 H, m, 3 x ring CH,, CH), 2.7 (2 H, s, CH,Cl), and 3.3, 3.6 (2 H, 2 d, J 12 Hz, CH,O); 6,(CC14) 17.8, 22.0, 24.2 (3 x CH,), 35.0 (CH), 46.7, 50.1 (CH,Cl, CH,O), and 59.3 p.p.m.(CO); mjz 147 (M' + 1, 1), 145 (M+ -1, 2), 120 (34), 119 (ll), 118 (loo), 117 (14), 11 1 (13), 97 (42), 90 (18), 88 (54), 83 (26), 81 (29), 79 (54), 77 (38), 69 (98), 67 (64), 65 (13), 55 (26), 54 (27), 53 (80), 52 (19), 51 (22), 49 (1 l), 43 (1 l), 41 (39), and 39 (29). 2-But~~l-2-(chloromethyl)oxirane(5e) (Found: C, 56.6; H, 8.7. C,H,,ClO requires C, 56.57; H, 8.81); v,,,~(film) 3 050 cm-' (oxirane CH); 6H(cc14) 0.8-1.0 (3 H, m, Me), 1.2-1.7 6 H, m, (CH,),CO, 2.6 (2H, s, CH,CI), and 3.25,3.6 (2 H, 2 d, J 12 Hz, CH,O); 6,(CC14) 14.5 (Me),23.4,27.2,31.8 (CH,),, 48.9,52.8 (CH,Cl, CH,O), and 59.0 p.p.m. (CO); mjz 135 (M+ + 2 -Me, 1x1,133 (M' -Me, 3), 121 (19), 119 (54), 108 (35), 106 (100),99 (lo),79 (1 l), 77 (27), 55 (18), 43 (12), 42 (14), and 41 (14).2-Chloromethyl-2-isobutyloxirane (5f)(Found: C, 56.2; H, 8.9. C,H13C10 requires C, 56.57; H, 8.81); v,,,~(filrn) 3 040 cm-' (oxirane CH); 6,(CC14) 0.9 (6 H, 2 d, J 5 Hz, 2 x Me), 1.2-1.8 (3 H, m. CH,CH), 2.6 (2 H, s, CH,Cl), and 3.25,3.55 (2 H, 2 d, J 12 Hz, CH,O); amp;,(neat) 23.0,23.5 (2 x Me), 25.3 (CH), 41.0 (CH,CH), 48.5, 52.9 (CH,Cl, CH,O), and 58.0 p.p.m. (C0);mjz 135 (M+ + 2 -Me, 15), 133 (M+ -Me,47), 113 (201, 108 (33), 106 (loo), 99 (30), 79 (14), 77 (35), 75 (16), 69 (1 l), 67 (11), 55 (16), 49 (lo), 43 (33), 42 (17), 41 (35), and 39 (25). 2-Chloromethyl-2-t-but~~loxirclne(5g) (Found: C, 56.7; H, 8.8. C,H ,CIO requires C, 56.57; H, 8.81); vmaX,(CCl4)3 060 cm-' (oxirane CH); amp;,(CC14) 0.95 (9 H, s, 3 x Me), 2.7,2.8 (2 H, 2 d, J 5 Hz, CH,Cl), and 3.3, 3.95 (2 H, 2 d, J 12 Hz, CH,O); 6,(CC14) 26.3 (3 x Me), 33.3 (CMe), 45.1,49.0 (CH,Cl, CH,O), and 62.6 p.p.m.(CO); mjz 135 (M+ + 2 -Me, 17), 133 (M+ -Me, 531, 133 (12),84 (20), 83 (loo), 79 (lo), 77 (22), 69 (34), 67 (33),65 (10),57 (34),56 (13), 55 (43), 53 (lo), 51 (lo), 49 (1 l), 43 (25), 41 (53), and 39 (25). 2-Chloromethyf-2-pheny/oxirane (5h);' v,,, (film) 3 060, 3 040 (oxirane CH, CH=C), 1600, and 1490 cm-' (C=C); amp;(CDCl,) 2.85, 3.15 (2 H, 2 d, J 5 Hz, CHzCl), 3.75, 4.0 (2 H, 2 d, J 12 Hz, CHZO), and 7.3-7.5 (5 H, m, ArH); amp;(neat) 48.8, 56.0 (CHzCl, CH,O), 59.6 (CO), 126.9, 128.8, 129.0, and 138.1 P.P.m. (Arc:); mi. 170 (M+ + 2,204, 168 (M+, 8), 167 (1 7), 133 (191, 104 (591, 103 (loo), 102 (12), 91 (39), 77 (33), and 51 (15).2-CJ~l~~rome~h~l-2-c?,clohex~~loxirane(5)(Found: C, 61.7; H, 8.4. C,H,,ClO requires C, 61.89; H, 8.65); vmaX.(film)3 060 cm-' (oxirane CH); amp;H(Cc14) 0.7--2.1 ll H, m, (CH,),, CHI, 2.55,2.7 (2 H, 2 d, J5 Hz, CH,Cl), and 3.3,3.7 (2 H, 2 d, J 12 Hz, CH,O); amp;(neat) 21.8, 27.7, 29.2 (CH,),, 38.9 (CH),47.5, 50.3 (CH,Cl, CH,O), and 61.2 p.p.m. (CO); mjz 174 (M+, I), 139(23), 134(12), 132(35), 125(99), 121 (34), 119(100), 109(49), 108 (18), 107 (32), 106 (20), 95 (28), 93 (51), 91 (21), 83 (ll), 82 (lo), 81 (32), 80 (12), 79 (58), 77 (24), 68 (14), 67 (79), 65 (14), 55 (35), 54 (lo), 53 (21), 51 (ll), 43 (19), 41 (31), and 39 (25).2-(4-Chlorobutyl)-2-(chloromef~~l)o~~ra~e(5) (Found: C, 45.9; H, 6.5. C,H,,C1,0 requires C, 45.92; H, 6.61); vmaX,(CCl4)3 050 cm-l (oxirane CH); G,(CDCl,) 1.2-2.0 6 H, m,(CH,),CO, 2.7 (2 H, s, COCH,Cl), and 3.4-3.7 (4 H, m, CH,O, ClCH,CH,); amp;(CCl,) 22.2, 31.1, 33.0 (CH,),CO, 44.8,48.3, 52.6 (2 x CH,Cl, CH,O), and 58.8 p.p.m. (CO); m/z 167 (M+ -Me, 1), 133 (12), 121 (33), 119 (loo), 108 (28), 106 (88),81 (34), 79 (20), 77 (36), 75 (17), 67 (lo), 55 (22), 53 (19), 51 (lo), 49 (17), 43 (14), 42 (19), 41 (31), and 39 (23). References 1 For a recent report see, for instance: C. Chen, Y. Shen, and Y.-Z. Huang, Tetrahedron Lett., 1986, 29, 1395. 2 G. Polson and D. C. Dittmer, Tetrahedron Lett., 1986, 27, 5579. 3 R. J. Gritter, in lsquo;The Chemistry of the Ether Linkage,rsquo; ed.S. Patai, John Wiley amp; Sons, London, 1967, ch. 9. 4 (a) J. Barluenga, J. L. Fernandez-Simon, J. M. Concellon, and M. Yus, J. Chern. SOC.,Chern. Cornmun., 1986, 1665; (6) J. Barluenga, J. CHEM. SOC. PERKIN TRANS. I 1989 J. L. Fernandez-Simon, J. M. Concellon, and M. Yus, ibid., 1987,915; (c) J. Barluenga, J. L. Fernandez-Simon, J. M. Concellbn, and M. Yus, Synthesis, 1987, 587. 5 C. Einhorn, C. Allavena, and J.-L. Luche, J. Chem. SOC.,Chem. Cornrnun., 1988, 333. 6 R. Tarhouni, B. Kirschleger, M. Rambaud, and J. Villieras, Tetrahedron Lett., 1984, 25, 835. 7 K. M. Sadhu and D. S. Matteson, Tetrahedron Lett., 1986, 27, 795. 8 M. B. Green and W. J. Hickinbottom J. Chem. SOC.,1957, 3262. 9 L. F. Hatch and T. L. Patton, J. Am. Chem. Soc., 1954, 76, 2705. 10 J. March, lsquo;Advanced Organic Chemistry,rsquo; J. Wiley amp; Sons, New York, 1985, p. 381. 11 P. E. Sonnet and J. E. Oliver, J. Org. Chem., 1976, 41, 3284. 12 G. Polson and D. C. Dittmer, J. Org. Chem., 1988, 53, 791. 13 F. Johnson, J. P. Panella, and A. A. Carlson, J. Org. Chem., 1962,27, 2241. 14 J. Barluenga, J. L. FernBndez-Simon, J. M. Concellon, and M. Yus, J. Chem. SOC.,Perkin Trans. I, 1988, 3339. 15 lsquo;Methoden der Organischen Chemie (Houben-Weyl),rsquo; George Thieme, Stuttgart, 1970, vol. 13/1, p. 135. Received 10th May 1988; Paper 8/01839A

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号