...
首页> 外文期刊>The FASEB Journal >Vaccines targeting self-antigens: mechanisms and efficacy-determining parameters
【24h】

Vaccines targeting self-antigens: mechanisms and efficacy-determining parameters

机译:Vaccines targeting self-antigens: mechanisms and efficacy-determining parameters

获取原文
获取原文并翻译 | 示例
           

摘要

We recently showed that it is possible to compromise tumor vessel function and, as a consequence, suppress growth of aggressive preclinical tumors by immunizing against the tumor vascular markers extra domain-A (ED-A) or -B (ED-B) of fibronectin, using a fusion protein consisting of the ED-A or ED-B peptide fused to bacterial thioredoxin. To address the mechanism behind fusion protein-induced immunization and the specific contribution of the different vaccine constituents to elicit an anti-self-antibody response, we immunized mice with modified or unmodified self-antigens, combined with different adjuvant components, and analyzed antibody responses by ELISA in sera. Several essential requirements to circumvent tolerance were identified: (1) a potent pattern recognition receptor agonist like an oligonucleotide containing unmethylated cytosine and guanine dinucleotides (CpG); (2) a depot adjuvant to keep the CpG at the site of injection; and (3) the presence of foreign sequences in the vaccine protein. Lack of either of these factors abolished the anti-self-response (P = 0.008). In mice genetically deficient for type I IFN signaling, there was a 60 reduction in the anti-self-response compared with wildtype (P = 0.011), demonstrating a key role of this pathway in CpG-induced circumvention of self-tolerance. Identification of these mechanistic requirements to generate a potent anti-self-immune response should significantly aid the design of efficient, specific, and safe therapeutic cancer vaccines.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号